

OMNIKEY®

5326 DFR
SOFTWARE DEVELOPER GUIDE

5326-903, Rev A.0

March 2012

© 2012 HID Global Corporation. All rights reserved.

15370 Barranca Parkway
Irvine, CA 92618

Software Developer Guide, 5326-903, Rev A.0

Page 2 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

Contents

About this Guide .. 5
Purpose .. 5
How you should read this guide ... 5
How this guide is organized .. 5

Overview ... 5
Product Description .. 5
Features .. 5
1.1 Getting Started .. 6

2 PC/SC 2.02 ... 7
2.1 Overview ... 7
2.2 How to access Contactless Cards or the reader through PC/SC ... 7
2.3 Contactless specific PC/SC commands ... 9

3 Objects and Items ... 15
3.1 Overview ... 15
3.2 SIO Processor ... 15
3.3 The OID Tree .. 15
3.4 Secure Channel .. 16

4 Migration Scenarios ... 20
4.1 Get CSN .. 20
4.2 Get PAC Bits ... 21
4.3 Update Reader Key .. 22

5 Reader Configuration ... 23
5.1 Overview ... 23
5.2 Example Get Product Name ... 23

6 Code Examples ... 24
6.1 Initialize Secure Channel .. 24
6.2 Terminate Secure Channel ... 27
6.3 Transmit IFD Specific .. 29
6.4 Transmit PCSC ... 30
6.5 Transmit PCSC UID .. 31
6.6 Get UID ... 33
6.7 Transmit IFD Specific .. 34
6.8 Get PAC Bits ... 35

7 Secure Channel Sample Class Implementation .. 36
7.1 Constructor .. 36

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 3 of 72

© 2012 HID Global Corporation. All rights reserved.

7.2 Destructor .. 36
7.3 Initialize 1 .. 37
7.4 Initialize 2 .. 40
7.5 Check Server Authentication 1 ... 41
7.6 Check Server Authentication 2 ... 44
7.7 Derive Keys ... 45
7.8 Compute Cryptogram .. 47
7.9 Import Key ... 48
7.10 Compute Mac .. 50
7.11 Pad .. 53
7.12 Unpad .. 53
7.13 Wrap .. 56
7.14 Unwrap 1 ... 57
7.15 Unwrap 2 ... 59
7.16 Covert String to Hex .. 61
7.17 Convert Hex To String .. 62

8 Appendix Reader Configuration References ... 63
8.1 Reader Capabilities ... 63
8.2 Reader Configuration Control ... 69

9 Appendix Definitions, Abbreviations and Symbols .. 70

10 Appendix References ... 71

List of Figures
Figure 1 - Registry Editor ... 6

List of Tables
Table 1 - Secure Channel Return codes ... 20
Table 2 - Reader Capabilities Structure .. 63

Software Developer Guide, 5326-903, Rev A.0

Page 4 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

Copyright

© 2012 HID Global Corporation. All rights reserved.

Trademarks
HID GLOBAL, HID, the HID logo, iCLASS, SIO Secure Identity Object, TIP and OMNIKEY are
the trademarks or registered trademarks of HID Global Corporation, or its licensors, in the
U.S. and other countries.

Revision History
Date Author Description Document

Version

3/27/2012 Jacqueline
Maatuq

Initial Version A.0

Contacts

North America Europe, Middle East and Africa

15370 Barranca Parkway
Irvine, CA 92618
USA
Phone: 800 237 7769
Fax: 949 732 2120

Phoenix Road
Haverhill, Suffolk CB9 7AE
England
Phone: +44 1440 714 850
Fax: +44 1440 714 840

Asia Pacific

19/F 625 King’s Road
North Point, Island East
Hong Kong
Phone: 852 3160 9800
Fax: 852 3160 4809

support.hidglobal.com

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 5 of 72

© 2012 HID Global Corporation. All rights reserved.

About this Guide

Purpose
This Developer Guide is for developers integrating contactless storage or CPU cards using
the OMNIKEY 5326 DFR.

How you should read this guide
Beginners should read this guide chapter by chapter.

Developers familiar with OMNIKEY 5x2x should read Chapter 3 and 4 for migration purposes.

How this guide is organized
After a brief overview in Chapter 0 and a PC/SC introduction in Chapter 2, you can start
building up your first “hello card” program.

Chapter 3 discusses the OMNIKEY 5326 DFR use of the HID SIO processor technology.

Chapter 4 describes migration scenarios.

Finally, Chapter 5 shows how to retrieve reader information.

Overview

Product Description
HID Global’s OMNIKEY 5326 DFR opens new market opportunities for system integrators
seeking simple reader integration and development using standard interfaces, such as CCID
(Circuit Card Interface Device). This reader works without installing or maintaining device
drivers; only an operating system driver, for example, Microsoft CCID driver is necessary.

The OMNIKEY 5326 DFR features include supporting the common low and high frequency
card technologies. This includes iCLASS, HID Prox and facilitating the credential migration
from low frequency (PROX) to high frequency (iCLASS) cards.

The OMNIKEY 5326 DRF provides a TIP enabled boot loader for secure firmware upgrades.
No special driver is necessary for firmware upgrades. It is possible to upgrade the reader with
firmware add-ons.

See www.hidglobal.com/omnikey for new firmware versions.

Features
• CCID Support – Removes the requirement to install drivers on standard operating

systems to fully support capabilities of the reader board
• Dual Frequency – Allows straightforward migration scenarios by simultaneously

supporting Low and High Frequency credentials, including HID PROX and iCLASS®
• Rapid and Easy Integration – No special driver installation is required
• TIP Enabled Boot Loader – Allows a secure firmware upgrade in the field
• SIO Enabled – The integrated SIO processor enables the reader to process PAC bits and

all future Secure objects

http://www.hidglobal.com/omnikey

Software Developer Guide, 5326-903, Rev A.0

Page 6 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

1.1 Getting Started

1.1.1 Driver installation
As stated previously, no extra driver installation is necessary and every CCID compliant driver
should work with the reader. However, Microsoft’s CCID driver prevents the execution of
CCID Escape commands. If an application uses those commands, apply the following
procedure. See also 2.2.

In order to send or receive an Escape command to a reader, add the DWORD registry value
EscapeCommandEnable and set to a non-zero value under the
HKLM\SYSTEM\CCS\Enum\USB\Vid*Pid**\Device Parameters key.

The VID and PID of the reader are 076B and 5326 so create the DWORD under:

HKLM\SYSTEM\CCS\Enum\USB\VID_076B&PID_5326\xxxxxxxx\Device Parameters

And set the value to “1”.

Then the vendor IOCTL for the Escape command is defined as follows:

#define IOCTL_CCID_ESCAPE SCARD_CTL_CODE(3500).

For details see http://msdn.microsoft.com/en-us/windows/hardware/gg487509.aspx .

Figure 1 - Registry Editor

http://msdn.microsoft.com/en-us/windows/hardware/gg487509.aspx

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 7 of 72

© 2012 HID Global Corporation. All rights reserved.

2 PC/SC 2.02

2.1 Overview
With the OMNIKEY 5326, access contactless cards through the same framework as ISO7816
contact cards. This makes card integration a snap for any developer who is already familiar
with PC/SC. Even valuable PC/SC resource manager functions, such as card tracking, are
available for contactless card integration.

The Microsoft® Developer Network (MSDN®) Library contains valuable information and a
complete documentation of the SCard API within the MSDN Platform SDK.

See http://msdn.microsoft.com/en-us/library/windows/desktop/aa380149(v=vs.85).aspx

You can directly access contactless CPU cards through the PC/SC driver.

2.2 How to access Contactless Cards or the reader through
PC/SC
The following steps provide a guideline to create your first contactless smart card application
using industry standard, PC/SC compliant API function calls. The function definitions provided
are taken verbatim from the MSDN Library [MSDNLIB]. For additional descriptions of these
and other PC/SC functions provided by the Microsoft Windows PC/SC smart card
components, refer directly to the MSDN Library.
See http://msdn.microsoft.com/en-us/library/ms953432.aspx.

1. Establish Context
This step initializes the PC/SC API and allocates all resources necessary for a smart
card session. The SCardEstablishContext function establishes the resource manager
context (scope) within which database operations is performed.
LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

2. Get Status Change
Check the status of the reader for card insertion, removal, or availability of the reader.
This SCardGetStatusChange function blocks execution until the current availability of the
cards in a specific set of readers change. The caller supplies a list of monitored readers
and the maximum wait time (in milliseconds) for an action to occur on one of the listed
readers.
LONG SCardGetStatusChange(IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderStates,
 IN DWORD cReaders);

http://msdn.microsoft.com/en-us/library/windows/desktop/aa380149(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms953432.aspx

Software Developer Guide, 5326-903, Rev A.0

Page 8 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

3. List Readers
Gets a list of all PC/SC readers using the SCardListReaders function. Look for
OMNIKEY CardMan 5326 in the returned list. If multiple OMNIKEY Contactless Smart
Card readers are connected to your system, they will be enumerated.
Example: OMNIKEY CardMan 5326 1, and OMNIKEY CardMan 5x21-CL 2.
LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

4. Connect
Now, you can connect to the card. The SCardConnect function establishes a connection
(using a specific resource manager context) between the calling application and a
smart card contained by a specific reader. If no card exists in the specified reader, an
error is returned.
LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

5. Exchange Data and Commands with the Card or the reader
Exchange command and data through APDUs. The SCardTransmit function sends a
service request to the smart card, expecting to receive data back from the card.
LONG SCardTransmit(IN SCARDHANDLE hCard,
 IN LPCSCARD_I0_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 IN OUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 IN OUT LPDWORD pcbRecvLength);

Note: In environments not allowing SCardTransmit() without an ICC or caused by any other
reasons or developers preferences the application can communicate via Control().
The application should retrieve the control code corresponding to
FEATURE_CCID_ESC_COMMAND (see part 10, rev.2.02.07). In case this feature is not
returned, the application may try SCARD_CTL_CODE(3500) as control code to use.

LONG SCardControl(IN SCARDHANDLE hCard,
 IN DWORD dwControlCode,
 IN LPCVOID lpInBuffer,
 IN DWORD nInBufferSize,
 OUT LPVOID lpOutBuffer,
 IN DWORD nOutBufferSize,
 OUT LPDWORD lpBytesReturned);

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 9 of 72

© 2012 HID Global Corporation. All rights reserved.

6. Disconnect
It is not absolutely necessary to disconnect the card after the completion of all
transactions, but it is recommended. The SCardDisconnect function terminates a
connection previously opened between the calling application and a smart card in the
target reader.
LONG SCardDisconnect(IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

7. Release
This step ensures all system resources are released. The SCardReleaseContext function
closes an established resource manager context, freeing any resources allocated
under that context.
LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

2.3 Contactless specific PC/SC commands
The PC/SC command set for contactless cards is defined in section 3.2 of the document
“Interoperability Specification for ICCs and Personal Computer Systems - Part 3.
Requirements for PC-Connected Interface Devices”, and is available from the PC/SC
Workgroup website http://www.pcscworkgroup.com. The commands use standard APDU
syntax and standard SCardTransmit API, but use the reserved value of the CLA byte of ‘FF’.

Supported Reader Commands

Instruction Description Comments

0xCA Get Data Partially supported (only UID)
0x70 Vendor Specific Fully support for all vendor specific

generic commands
0x82 Load Keys Partially supported (only Reader key)

Common SW1SW2 return codes

SW1SW2 Meaning

0x9000 Operation successful
0x6700 Wrong length (Lc or Le)
0x6A81 Function not supported
0x6B00 Wrong parameter (P1 or P2)
0xC0XX Wrong length (wrong number Le; 'XX' encodes the exact number) if Le is

less than the available UID length)
0x6F00 Operation failed

http://www.pcscworkgroup.com/

Software Developer Guide, 5326-903, Rev A.0

Page 10 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

2.3.1 Get Data
This Get Data command will retrieve the UID of an inserted card.

This command can be used with or without an established secure channel. See Chapter 4.1
for a code example.

Command APDU

CLA INS P1 P2 Lc Data In Le
0xFF 0xCA 0x00 0x00 - - XX

Response APDU

P1 Card type Data Out SW1SW2
0x00 iCLASS 15693 8-byte CSN 0x9000 Operation successful

Other - 0x6A81 Function not supported

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 11 of 72

© 2012 HID Global Corporation. All rights reserved.

2.3.2 Vendor specific generic command
This command allows applications to control OMNIKEY specific features provided by the
reader and can only be used in secure mode. For an example see Chapter 4.1.
Command APDU

CLA INS P1 P2 Lc Data Field Le
FF 70 07 6B xx DER TLV coded PDU (Vendor Payload) xx

Vendor Command Tag Vendor Payload Branch

FF 70 07 6C Lc 00h sioApi [A0h]
01h manageSecureSession [A1h]
02h readerInformationApi [A2h]
0Dh response [BDh] or [9Dh] (primitive)
0Eh errorResponse [BE] or [9Eh] (primitive)

Response APDU

Data field SW1 SW2
DER TLV Response PDU See ISO 7816-4

The response APDU is encapsulated in the response TAG or error response TAG. In cases of
internal errors, the IFD returns SW1SW2 = 9000 and the data field is encapsulated in the
error response tag. In cases of an ISO 7816 violation, the return code is according to ISO
7816-4 and the data field is empty.

Error Response:
The DFR error response can be caused by two processes

SIO Processor exception
If the error response is caused by the SIO processor then the error response TAG is BEh
(Class Context Specific) + (Constructed) + (0Eh). For details, see the following table, Error Response
Message.

Software Developer Guide, 5326-903, Rev A.0

Page 12 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

Error Response Message

BE 07 80 01 err 81 02 sw1 sw2
Value Description ASN.1 Encoding Notes
0xBE Tag = ErrorResponse (0x1E) Constructed Type => 0xBE
0x07 Len = 7
0x80 Tag = ErrorCode (0x00) Primitive Type => 0x80
0x01 Len = 1
Err VALUE = see table Error

Codes

ENUMERATED

0x81 Tag = Data (0x01) Primitive Type => 0x81
0x02 Len = 2
sw1 sw2 VALUE = Status Word specific

to the Error Code
OCTET STRING

Error Codes

Name Value Notes
erCommunicationError 0x00 A communications error was

detected.
erCardNotFound 0x01 A card was not found by the

performAnti-collision command.
erNotSupported 0x03 Command not supported in

current version of the SIO
Processor.

erTlvNotFound 0x04 Message TLV not found in
current version of the SIO
Processor.

erTlvMalformed 0x05 The message TLV is not
constructed properly.

erIso7816Exception 0x06 An unrecoverable violation of
ISO7816 occurred

erSIOError 0x22 Exception from SIO processing
of a card

erSIOProcessorException 0x3C Exception from SIO Processor,
likely due to an invalid
parameter

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 13 of 72

© 2012 HID Global Corporation. All rights reserved.

A) DFR PC/SC handler exception

If the error response is caused by the DFR Firmware core then the error response TAG is
9Eh (Class Context Specific) + (Primitive) + (0Eh). Length is 2 byte. First byte is the cycle in
which the error is occurred and the second byte is the exception type.

9E 02 xx yy 90 00
Value Description
9Eh Tag = Error Response (0Eh) + (Class Context Specific) + (Primitive)
02h Len = 2

cycle Value byte 1: Cycle in which the error is occurred, see Error Cycle
error Value byte 2: Error code, see Error Code
SW1 90
SW2 00

Error Cycle

First value byte
Cycle Description

0 HID Proprietary Command APDU
1 HID Proprietary Response APDU
2 HID Read or Write DFR EEPROM Structure
3 RFU
4 SIO Processor Process Command APDU
5 SIO Processor Process Response APDU

Error Code

Second value byte
Exception Description
3 03h NOT_SUPPORTED
4 04h TLV_NOT_FOUND
5 05h TLV_MALFORMED
6 06 ISO_EXCEPTION

13 1Dh OUT_OF_PERSISTENT_MEMORY
17 11h INVALID_STORE_OPERATION
19 13h TLV_INVALID_SETLENGTH
20 14h TLV_INSUFFICIENT_BUFFER
21 15h DATA_OBJECT_READONLY
31 1F APPLICATION_EXCEPTION (Destination Node ID mismatch)
42 2Ah MEDIA_TRANSMIT_EXCEPTION (Destination Node ID mismatch)
43 2Bh SAM_INSUFFICIENT_MSGHEADER (Secure Channel ID not allowed)
47 2Fh TLV_INVALID_INDEX

Software Developer Guide, 5326-903, Rev A.0

Page 14 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

2.3.3 Load Keys
For an update of the reader key a secure channel is mandatory.

See 4.3 for a code example.

Command Class Ins P1 P2 Lc Data In Le

Load
Keys

0xFF 0x82 0x20 Key
Number

0x10 Key ---

Type SW1 SW2 Description

Normal 0x90 0x00 Successful

Execution

Error

0x64 0x00 No Response from
media (Time Out)

 0x65 0x81 Not usable block
number in the
memory area
(Memory failure)

Checking

Error

0x67 0x00 Wrong APDU length

 0x69 0x82 Block not
authenticated
(Security status not
satisfied)

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 15 of 72

© 2012 HID Global Corporation. All rights reserved.

3 Objects and Items

3.1 Overview
The reader presents smart card information as well as reader information as ASN.1
objects/items, whereby every object is identified by a unique Object Identifier (OID). A special
kind of object is a Secure Identity Object (SIO).

3.2 SIO Processor
The HID SIO (Secure Identity Object™) is a data model for storing and transporting identity
information in a single object. SIOs consist of a number of independent but associated data
objects for such items as physical access control (for example, card numbers), finger print
templates, and cash on card. The collection of this information in an SIO ensures the proper
coupling of related data (that is, guaranteeing that one individual's card is not associated with
another individual's fingerprint. Deploy SIOs in any number of form factors, including
contactless and contact smart cards, smart phones, and USB tokens. When combined with
an SIO interpreter on the authentication (or reader) side an SIO based system functions the
same as a traditional card and reader systems with enhanced levels of Security, Portability
and Flexibility.

3.3 The OID Tree
OIDs are organized as a tree under an “invisible” root node. The following table shows the first
root nodes.

Object sub tree Tag Value (hex) Description

sioApi 0xA0 SIO API,
equivalent to SAMCommand

manageSecureSession 0xA1 Establish and manage a secure session
readerInformationApi 0xA2 Reader information API
hidMediaPdu 0xA3 HID media specific PDU
nativeCardCommand 0xA4 Native Smart Card commands
humanInterfaceCommand 0xA5 Control of human interfaces

contactSmartCardCtrl 0xA6 Control of contact smart card
parameters

deviceSpecificCommand 0xBC Device specific command set
response 0xBD Response
errorResponse 0xBE Error Response

Software Developer Guide, 5326-903, Rev A.0

Page 16 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

3.4 Secure Channel

3.4.1 Overview
OK5326 DFR provides a Secure Channel for a secure communication between Host
application and reader. Benefits of using the Secure Channel are:

• Protect the data communication on the USB channel from eavesdropping

• Protect the host application from replay attacks

For certain operations (for example, reading of PAC bits from HID iCLASS cards) a secure
channel is mandatory.

For a secure channel transmission the SCardConnect should be used with ShareMode =
SCARD_SHARE_EXCLUSIVE. If a secure channel as established successful, then IFD do
not execute polling activities. The Client (host application) must ensure the correct termination
of the secure cannel after the last transaction.

The procedure to establish a secured channel is achieved in two phases, AUTH1 and
AUTH2.

Afterwards “Client” is the host application and “Server” is the IFD.

Note: In principle, manage the Secure Session by processing the SIO API (see 3.3).

Independent of the method the SIO Processor informs the dispatcher if the secure cannel is
established and terminated.

SAM sends this message “Core Command” with Node ID router (reader core).

// sam informs dispatcher about established SC

0A010A000081 a502 8800 9000

// dispatcher ACK

A0DA02630000nn 010a00000081 bd820002 8200 0000

// sam terminates the SC and informs the dispatcher about it

0A010A000081 a502 8900 9000

// dispatcher ACK - here SC UID doesn't have to be set anymore

A0DA02630000nn 010a00000000 bd820002 8200 0000

Note: The key for establishing a secure channel is available under NDA. For a key update
see chapter 4.3.

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 17 of 72

© 2012 HID Global Corporation. All rights reserved.

3.4.2 Initialize Secure Channel (AUTH1)
For initialize the secured channel the client must send an 8 byte RND.A and the key number.
By means of the Key Number the Client can establish a secured read only session or a
secured read / write session.

DER TLV PDU:

A1 12 // CHOICE ManageSECS

 A0 10 // CHOICE EstablishAUTH1

 80 01 00 // VersionSECCH (Currently SAM
ignores this value)

 81 01 yy // Key Number (OID)

 82 08 xx xx xx xx xx xx xx xx // RND.A

Note: Currently, the SIO processor ignores the value of version Tag (RFU). Code RFU as 0.

Response APDU:

Data field SW1 SW2

9D 20

uu uu uu uu uu uu uu uu // 8 byte UID

rr rr rr rr rr rr rr rr // 8 byte RND.B

xx xx xx xx xx xx xx xx // 16 byte Reader Cryptogram

xx xx xx xx xx xx xx xx See Table 1

The complete APDU is:

FF 70 07 6B 14 A1 12 A0 10 80 01 00 81 01 yy 82 08 xx xx xx xx xx xx xx xx 00

Software Developer Guide, 5326-903, Rev A.0

Page 18 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

3.4.3 Initialize Secure Channel (AUTH2)
With the second authentication phase is the establishment of the secured channel finished.

DER TLV PDU:

A1 26 // CHOICE ManageSECS

 A1 24 // CHOICE EstablishAUTH2

 80 10 xx xx xx xx xx xx xx xx // xx = ClientCryptogram

 xx xx xx xx xx xx xx xx

 81 10 yy yy yy yy yy yy yy yy // yy = C-MAC

 yy yy yy yy yy yy yy yy

Response APDU:

Data field SW1 SW2

9D 10

yy yy yy yy yy yy yy yy // 16 byte R-MAC

yy yy yy yy yy yy yy yy See Table 1 - Secure Channel Return codes.

The complete APDU is:

FF 70 07 6B 28 A1 26 A1 24 80 10 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 81 10 yy yy
yy yy yy yy yy yy yy yy yy yy yy yy yy yy 00.

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 19 of 72

© 2012 HID Global Corporation. All rights reserved.

3.4.4 Terminate Secure Channel
The Session is terminated if an error occurred (bad client cryptogram) or if the Client
terminates the session. In both cases the IFD deletes the session keys S-MAC1, S-MAC2
and S-ENC. The IFD must ensure that the card loses the security state.

DER TLV PDU:

A1 02 // CHOICE ManageSECS

A2 00 // CHOICE terminateSecuredSession

This message is always encrypted in the secure channel and is never send plain.

Plain APDU PADDING

FF 70 07 6B 04 A1 02 A2 00 80 00 00 00 00 00 00

Encrypted message:

FF 70 07 6B

20

xx xx xx xx xx xx xx xx // xx = Enc(APDU+PADDING, S-ENC)

xx xx xx xx xx xx xx xx

yy yy yy yy yy yy yy yy // yy = C-MAC

yy yy yy yy yy yy yy yy

00

3.4.5 Security Engine Selection
According to clause 3.1 the IFD can support the native firmware security or (and) the SIO
Processor. Both methods use the same unified key numbering schema. The Host application
has the opportunity to choose the default security engine, if the IFD supports both. The
physical key storage is managed by the IFD firmware.

DER TLV PDU:

A1 02 // CHOICE ManageSECS

 A3 00 // CHOICE SecureElementEngine

A1 02 // CHOICE ManageSECS

 A4 00 // CHOICE NativeSecurityEngine

Response APDU:

Data field SW1 SW2

9D 00 (See Table 1 - Secure Channel Return codes)

Software Developer Guide, 5326-903, Rev A.0

Page 20 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

Table 1 - Secure Channel Return codes
Type SW1 SW2 Description

Normal 90 00 Successful
Execution Error 64 00 No Response from endpoint

Checking Error
67 00 Wrong APDU length
69 82 Security status not satisfied

4 Migration Scenarios

4.1 Get CSN
The CSN of a smart card can be read using the PC/SC command Get DATA (see chapter
2.3.1). Send the following command with the function ScardTransmit after a shared
connection to the card has been established (see chapter 2.2).

Example: Reading iCLASS card CSN

Command:

FF CA // Get Data

 00 00 // Get UID

 08 // Le

Response:

EF 8B AF 00 FB FF 12 E0 // CSN

 90 00 // SW1 SW2

Example: Reading HID PROX card CSN

FF CA // Get Data

 00 00 // Get UID

 00 // Le

Response:

6A 81 // SW1 SW2 -> Function not supported

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 21 of 72

© 2012 HID Global Corporation. All rights reserved.

4.2 Get PAC Bits
OMNIKEY 5x21 or 5x25 generates an ATS which contains the PACS bits. The OMNIKEY
5326 introduces a new method to retrieve those bytes in a card independent way.

The command “Get PAC Bits” returns the Physical Access Control bits of the inserted media.
The “Get PAC Bits” command is internal mapped to “GetContent Element”. If the inserted
media is not supported by the SIO processor, the GET PAC Bits command is processed by
the IFD firmware. This is the use case for an IFD which uses the SDR LF controller to read
the HID PROX media. The GET PAC Bits command is used in the following coding

DER TLV PDU:

A0 05 // CHOICE SioAPI

 A1 03 // CHOICE SamCommandGetContentElement

 80 01 // Sequence ContentElementTag

 04 // Value = implicitFormatPhysicalAccessBits

The complete APDU for LF (HID PROX) media is:

FF 70 07 6B 07 A0 05 A1 03 80 01 04 00

For all media which are supported by the SIO processor, a secure channel is mandatory to
perform the GET PAC Bits command. In a secure channel, the GET PAC Bits command must
comprise the root OID of the Secure Object or the virtual OID for legacy cards.

A0 13 // CHOICE SioAPI

 A1 11 // CHOICE SamCommandGetContentElement

 80 01 04 // ContentElementTag = implicitFormatPhysicalAccessBits

 84 0C 2B 06 01 04 // SoRootOID (virtual OID)

 01 81 E4 38

 01 01 02 04

Software Developer Guide, 5326-903, Rev A.0

Page 22 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

The plain command APDU for HF media (iCLASS), supported by the SIO Processor is:

FF 70 07 6B 15 A0 13 A1 11 80 01 04 84 0C 2B 06 01 04 01 81 E4 38 01 01 02 04 00

FF 70 07 6B 30 { Enc(plain APDU + PADDING, S-ENC) + C-MAC } 00

The command to send is encrypted according to clause 4.2.2.3.

Response:

9D // Tag = Response (1D)

 xx // length of PAC Bits

 PAC BIT STRING 1) // UNIVERSAL BIT_STRING TAG (1st byte) = 03

 // Length of UNIVERSAL BIT_STRING (2nd byte) = nn

// Unused Bits (3rd byte) is the number of trailing 0s in the last
byte

// PAC bits (ex 4th byte, nn-1 bytes) including required trailing
zeros

Example response for 35bit PAC bit string 1):

9D

 08

 03 06 05 81 ED BE 15 60

1) Note: In use case of a secure channel is the PAC BIT STRING a server cryptogram (see
3.4).

4.3 Update Reader Key
Update the reader key with the Load Keys (see chapter Error! Reference source not
found.) command. Establish a secure channel and transmit the following command:

Example: Updating the reader key

FF 82 // Load Keys

 20 80 // Reader key slot number 80

 10 // Le

 11 22 33 44 55 66 77 88 99 00 AA BB CC DD EE FF // New reader key

Response:

90 00 // SW1 SW2

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 23 of 72

© 2012 HID Global Corporation. All rights reserved.

5 Reader Configuration

5.1 Overview
All OMNIKEY 5326 DFR configuration items are identified by a unique ASN.1 leaf. The root is
defined as Reader Information API and is encapsulated in a vendor specific generic command
see 2.3.2. For a READ command the Le byte must be present. The IFD reply is encapsulated
in the Tag BDh and each leaf is encapsulated in the leaf Tag.

Under this root are a number of branches, organized as follows:

Reader Information Structure
Vendor
Command

Reader Information
API

Request Branch

FF 70 07 6B Lc Tag = A2h Get [A0h]
Set [A1h]

readerCapabilities [A0h]
readerHostInterface [A1h]

readerInformationVersion [88h]
readerConfigurationControl [A9h]

Appendix 63 lists all available objects.

5.2 Example Get Product Name
Command:

FF 70 07 6B 08 // Vendor Specific APDU with 8 bytes object

 A2 06 // Reader Information API

 A0 04 // Get Request

 A0 02 // Reader Capabilities

 82 00 // Product Name

 00 // Le

Reply:

BD 0F // Response

 82 0D // Product Name

 4F 4D 4E 49 4B 45 59 20 35 33 32 36 00 // OMNIKEY 5326

 90 00 // SW1 SW2

Software Developer Guide, 5326-903, Rev A.0

Page 24 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

6 Code Examples

6.1 Initialize Secure Channel
bool CReaders::EstablishSecureChannel(CString strKey, unsigned int uiVID, CString
strKeyRef)

{

 bool fRet = true;

 CString strChallenge;

 CString strServerAuthentication;

 CString strClientAuthData;

 CString strFirstRMAC;

 CString strIN;

 CString strOUT;

 do

 {

 // initialize the secure channel and get the client challange back

 if (strKey.GetLength() != 32)

 {

 fRet = false;

 break;

 }

 if (!m_secChannel.Init(strKey, &strChallenge))

 {

 fRet = false;

 break;

 }

 // send init command to the reader

 if (strChallenge.GetLength() != 16)

 {

 fRet = false;

 break;

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 25 of 72

© 2012 HID Global Corporation. All rights reserved.

 }

 if (strKeyRef.GetLength() != 2)

 {

 fRet = false;

 break;

 }

 strIN.Format("%s%s%s%s", m_cstrInitAuthD.Left(18), strKeyRef,
m_cstrInitAuthD.Right(4), strChallenge);

 if (!TransmitIFDspecific(uiVID, strIN, &strOUT))

 {

 fRet = false;

 break;

 }

 // get the server authentication data from the received message

 if (
strOUT.Left(m_cstrInitAuthDReply.GetLength()).CompareNoCase(m_cstrInitAuthDReply) !=
0)

 {

 if (
strOUT.Left(m_cstrInitAuthDReplyS.GetLength()).CompareNoCase(m_cstrInitAuthDReplyS)
!= 0)

 {

 fRet = false;

 break;

 }

 }

 strServerAuthentication = strOUT.Mid(strOUT.GetLength() - 68, 64);

 // check server authentication

 if (!m_secChannel.CheckServerAutentication(strServerAuthentication,
&strClientAuthData))

 {

 fRet = false;

 break;

 }

Software Developer Guide, 5326-903, Rev A.0

Page 26 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 // send cont auth to the reader

 strIN.Format("%s%s", m_cstrContAuthD, strClientAuthData.Right(0x20));

 strIN.Replace("x", strClientAuthData.Left(0x20));

 if (!TransmitIFDspecific(uiVID, strIN, &strOUT))

 {

 fRet = false;

 break;

 }

 // check reply to cont BD8200128A10

 if (
strOUT.Left(m_cstrContAuthDReply.GetLength()).CompareNoCase(m_cstrContAuthDReply)
!= 0)

 {

 if (
strOUT.Left(m_cstrContAuthDReplyS.GetLength()).CompareNoCase(m_cstrContAuthDReply
S) != 0)

 {

 fRet = false;

 break;

 }

 }

 strFirstRMAC = strOUT.Mid(strOUT.GetLength() - 36, 32);

 if (!m_secChannel.Unwrap(strFirstRMAC, &strOUT))

 {

 fRet = false;

 break;

 }

 // secure channel is now established and ready to use

 m_SecChannelIs = true;

 } while (false);

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 27 of 72

© 2012 HID Global Corporation. All rights reserved.

6.2 Terminate Secure Channel
bool CReaders::TerminateSecureChannel(unsigned int uiVID)

{

 bool fRet = true;

 CString strOUT;

 CString strIN;

 CString strReceive;

 do

 {

 if (!m_secChannel.WrapInput(m_cstrTerminateSecCh, &strIN))

 {

 fRet = false;

 break;

 }

 if (!TransmitIFDspecific(uiVID, strIN, &strOUT))

 {

 fRet = false;

 break;

 }

 if (strOUT.GetLength() >= 72)

 {

 // error response

 if (strOUT.Left(2).CompareNoCase("BE") == 0)

 strOUT.Delete(0, 4);

 else

 // short coded length

 if (strOUT.Mid(3, 2).CompareNoCase("82") != 0)

 strOUT.Delete(0, 4);

 // long coded length

 else

 strOUT.Delete(0, 12);

 // reove sw1sw2

Software Developer Guide, 5326-903, Rev A.0

Page 28 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 strOUT.Delete(strOUT.GetLength() - 4, 4);

 if (!m_secChannel.Unwrap(strOUT, &strReceive))

 {

 fRet = false;

 break;

 }

 }

 if ((strOUT.CompareNoCase(m_cstrChannelTerminated) != 0) &&
(strOUT.CompareNoCase(m_cstrChannelTerminatedS) != 0))

 {

 fRet = false;

 break;

 }

 } while (false);

 m_SecChannelIs = false;

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 29 of 72

© 2012 HID Global Corporation. All rights reserved.

6.3 Transmit IFD Specific
bool CReaders::TransmitIFDspecific(unsigned int uiVID, CString strSend, CString
*strReceive)
{
 DWORD wReturnCode = SCARD_E_CANCELLED;
 CString strData;
 char acIN[512];
 char acOUT[512];
 DWORD dwINsize = sizeof(acIN);
 DWORD dwOUTsize = sizeof(acOUT);
 if (!m_fIsConnected)
 return false;
 // basic check of the input string
 if ((strSend.GetLength() % 2) != 0)
 return false;

 strData.Format("%s%04X%02X%s00", m_cstrIFDspecificCLAINS, uiVID,
(strSend.GetLength() / 2), strSend);
 ConvertStringToHex(strData, acIN, &dwINsize);
 if (m_dwConnectionMode == SCARD_SHARE_SHARED)
 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_T1, (LPCBYTE)acIN,
dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);
 else
 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_RAW,
(LPCBYTE)acIN, dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);
 if (wReturnCode == SCARD_S_SUCCESS)
 {
 ConvertHexToString(acOUT, dwOUTsize, strReceive);
 }
 else
 {
 *strReceive = "";
 return false;
 }
 return true;
}

Software Developer Guide, 5326-903, Rev A.0

Page 30 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

6.4 Transmit PCSC
bool CReaders::TransmitPCSC(CString strSend, CString *strReceive)

{

 DWORD wReturnCode = SCARD_E_CANCELLED;

 CString strData;

 char acIN[512];

 char acOUT[512];

 DWORD dwINsize = sizeof(acIN);

 DWORD dwOUTsize = sizeof(acOUT);

 ConvertStringToHex(strSend, acIN, &dwINsize);

 if (m_dwConnectionMode == SCARD_SHARE_SHARED)

 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_T1, (LPCBYTE)acIN,
dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);

 else

 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_RAW,
(LPCBYTE)acIN, dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);

 if (wReturnCode == SCARD_S_SUCCESS)

 {

 ConvertHexToString(acOUT, dwOUTsize, strReceive);

 }

 else

 {

 strReceive->Format("returncode 0X%08X", wReturnCode);

 return false;

 }

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 31 of 72

© 2012 HID Global Corporation. All rights reserved.

6.5 Transmit PCSC UID
bool CReaders::TransmitPCSC(CString strSend, CString *strReceive, unsigned int uiVID)

{

 bool fRet = true;

 CString strIN;

 CString strOUT;

 CString strTemp;

 do

 {

 // check if there is a secure channel

 if (!m_SecChannelIs)

 {

 fRet = TransmitPCSC(strSend, strReceive);

 break;

 }

 // wrap the input

 if (!m_secChannel.WrapInput(strSend, &strIN))

 {

 fRet = false;

 break;

 }

 // WW begin

 // strIN.SetAt(strIN.GetLength()-1,'F');

 // strIN.SetAt(strIN.GetLength()-2,'F');

 // WW end

 // send via IFD specific

 if (!TransmitIFDspecific(uiVID, strIN, &strOUT))

 {

 fRet = false;

 break;

 }

Software Developer Guide, 5326-903, Rev A.0

Page 32 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 if (strOUT.GetLength() >= 72)

 {

 // error response

 if (strOUT.Left(2).CompareNoCase("BE") == 0)

 strOUT.Delete(0, 4);

 else

 // short coded length

 if (strOUT.Mid(3, 2).CompareNoCase("82") != 0)

 strOUT.Delete(0, 4);

 // long coded length

 else

 strOUT.Delete(0, 12);

 // reove sw1sw2

 strOUT.Delete(strOUT.GetLength() - 4, 4);

 if (!m_secChannel.Unwrap(strOUT, strReceive))

 {

 fRet = false;

 break;

 }

 }else

 {

 strReceive->Format("%s", strOUT);

 }

 } while (false);

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 33 of 72

© 2012 HID Global Corporation. All rights reserved.

6.6 Get UID
void CTestApp_PCportDlg::OnBnClickedButtonGetuid()

{

 CString strData;

 UpdateData(true);

 unsigned int uiVID = 0;

 if (sscanf_s(m_strVID, "%x", &uiVID) != 1)

 {

 uiVID = 0;

 }

 if (m_cReaders.TransmitPCSC(m_cstrGetsDataUID, &strData, uiVID))

 {

 if (strData.GetLength() >= 4)

 {

 m_strPCSCSW1SW2 = strData.Right(4);

 m_strPCSCGetDataResult = strData.Left(strData.GetLength() - 4);

 }

 }

 else

 {

 MessageBox("problems in Transmit", "Hint", MB_OK);

 m_strPCSCGetDataResult = strData;

 }

 UpdateData(false);

}

Software Developer Guide, 5326-903, Rev A.0

Page 34 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

6.7 Transmit IFD Specific
bool CReaders::TransmitIFDspecific(unsigned int uiVID, CString strSend, CString *strReceive)

{

 DWORD wReturnCode = SCARD_E_CANCELLED;

 CString strData;

 char acIN[512];

 char acOUT[512];

 DWORD dwINsize = sizeof(acIN);

 DWORD dwOUTsize = sizeof(acOUT);

 if (!m_fIsConnected)

 return false;

 // basic check of the input string

 if ((strSend.GetLength() % 2) != 0)

 return false;

 strData.Format("%s%04X%02X%s00", m_cstrIFDspecificCLAINS, uiVID,
(strSend.GetLength() / 2), strSend);

 ConvertStringToHex(strData, acIN, &dwINsize);

 if (m_dwConnectionMode == SCARD_SHARE_SHARED)

 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_T1, (LPCBYTE)acIN,
dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);

 else

 wReturnCode = SCardTransmit(m_hCard, SCARD_PCI_RAW, (LPCBYTE)acIN,
dwINsize, NULL, (LPBYTE)acOUT, &dwOUTsize);

 if (wReturnCode == SCARD_S_SUCCESS)

 {

 ConvertHexToString(acOUT, dwOUTsize, strReceive);

 }

 else

 {

 *strReceive = "";

 return false;

 }

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 35 of 72

© 2012 HID Global Corporation. All rights reserved.

6.8 Get PAC Bits
void CTestApp_PCportDlg::OnBnClickedButtonGetpacbits()

{

 unsigned int uiVID = 0;

 CString strReceive, strSend;

 UpdateData(true);

 if (sscanf_s(m_strVID, "%x", &uiVID) == 1)

 {

 if (m_cReaders.SecureChannelIsEstablished())

 {

 strSend.Format("%s%04X%02X%s00", m_cstrIFDspecificCLAINS, uiVID,
(m_cstrGetPACBitswOID.GetLength() / 2), m_cstrGetPACBitswOID);

// strSend.Format("%s", m_cstrGetPACBitswOID);

// strSend.Format("FF70076B07A005A10380010400");

// strSend.Format("A103800104");

 if (m_cReaders.TransmitPCSC(strSend, &strReceive, uiVID))

 {

 m_strPACBits = strReceive;

 }

 else

 {

 MessageBox("problems in Transmit", "Hint", MB_OK);

 }

 }

 else if (m_cReaders.TransmitIFDspecific(uiVID, m_cstrGetPACBits, &strReceive))

 {

 m_strPACBits = strReceive;

 }

 else

 {

 MessageBox("problems in Transmit", "Hint", MB_OK);

 }

 }

 else

 MessageBox("please enter a valid VID", "Hint", MB_OK);

 UpdateData(false);

}

Software Developer Guide, 5326-903, Rev A.0

Page 36 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7 Secure Channel Sample Class Implementation

7.1 Constructor
CSecureChannel::CSecureChannel()

{

 m_hProv = NULL;

 m_hMK = NULL;

 m_hSCBK = NULL;

 m_hSMAC1 = NULL;

 m_hSMAC2 = NULL;

 m_hSENC = NULL;

 memset((void*)m_abICV, 0x00, sizeof(m_abICV));

}

7.2 Destructor
CSecureChannel::~CSecureChannel(void)

{

 // release the resources

 if(m_hProv)

 {

 CryptReleaseContext(m_hProv, 0);

 }

 if(m_hSCBK)

 {

 CryptDestroyKey(m_hSCBK);

 }

 if(m_hSMAC1)

 {

 CryptDestroyKey(m_hSMAC1);

 }

 if(m_hSMAC2)

 {

 CryptDestroyKey(m_hSMAC2);

 }

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 37 of 72

© 2012 HID Global Corporation. All rights reserved.

 if(m_hSENC)

 {

 CryptDestroyKey(m_hSENC);

 }

 if(m_hMK)

 {

 CryptDestroyKey(m_hMK);

 }

}

7.3 Initialize 1
bool CSecureChannel::Init(BYTE* abKey, DWORD* dwLength, BYTE* abChallenge, DWORD*
dwLengthCh)

{

 BYTE pbData[100];

 DWORD dwSize = sizeof(pbData);

 HCRYPTKEY phKey;

 struct {

 BLOBHEADER hdr;

 DWORD cbKeySize;

 BYTE rgbKeyData [16];

 } myBlob;

 if (*dwLength != 16)

 return false;

 if(!CryptAcquireContext(&m_hProv,

 0,

 NULL,//MS_ENH_RSA_AES_PROV,

 PROV_RSA_AES,

 CRYPT_NEWKEYSET)) // 0))

 {

 if(!CryptAcquireContext(&m_hProv,

Software Developer Guide, 5326-903, Rev A.0

Page 38 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 0,

 NULL,//MS_ENH_RSA_AES_PROV,

 PROV_RSA_AES,

 0))

 {

 return false;

 }

 }

 memcpy(m_abMasterKey, abKey, 16);

 // generate the client challange (8 byte random number)

 if (CryptGenKey(m_hProv, CALG_AES_128, CRYPT_EXPORTABLE, &phKey))

 {

 if (!CryptExportKey(phKey, NULL, PLAINTEXTKEYBLOB, 0, pbData, &dwSize))

 return false;

 if (dwSize == sizeof(myBlob))

 {

 BYTE clientChallenge[] =
{0x46,0x90,0x2B,0x57,0xC6,0x8D,0x14,0x90};

 memcpy(m_abClientChallenge, clientChallenge,
sizeof(clientChallenge));

 //memcpy(m_abClientChallenge, &pbData[dwSize-16], 8);

 }

 else

 return false;

 CryptDestroyKey(phKey);

 // import the master key

 myBlob.hdr.bType = PLAINTEXTKEYBLOB;

 myBlob.hdr.bVersion = CUR_BLOB_VERSION;

 myBlob.hdr.reserved = 0;

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 39 of 72

© 2012 HID Global Corporation. All rights reserved.

 myBlob.hdr.aiKeyAlg = CALG_AES_128;

 myBlob.cbKeySize = 16;

 memcpy(myBlob.rgbKeyData, m_abMasterKey, 16);

 if (!CryptImportKey(m_hProv, (BYTE*)&myBlob, sizeof(myBlob), NULL, 0, &m_hMK))

 {

 return false;

 }

 }

 if (*dwLengthCh < 8)

 return false;

 memcpy(abChallenge, m_abClientChallenge, 8);

 *dwLengthCh = 8;

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

Page 40 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.4 Initialize 2
bool CSecureChannel::Init(CString strKey, CString* strChallenge)

{

 bool fRet = true;

 BYTE abKey[32];

 DWORD dwKSize = sizeof(abKey);

 BYTE abChallenge[32];

 DWORD dwCSize = sizeof(abChallenge);

 do

 {

 if (!ConvertStringToHex(strKey, abKey, &dwKSize))

 {

 fRet = false;

 break;

 }

 if (!Init(abKey, &dwKSize, abChallenge, &dwCSize))

 {

 fRet= false;

 break;

 }

 if (!ConvertHexToString(abChallenge, dwCSize, strChallenge))

 {

 fRet = false;

 break;

 }

 } while (false);

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 41 of 72

© 2012 HID Global Corporation. All rights reserved.

7.5 Check Server Authentication 1
bool CSecureChannel::CheckServerAutentication(BYTE* abServerAuthData, DWORD*
dwLengthAuthData, BYTE* abClientAuthData, DWORD* dwLengthCl)

{

 BYTE abKeyInput[16];

 BYTE abClientCryptogram[16];

 BYTE abServerCryptogram[16];

 BYTE abIV[16];

 BYTE pbData[100];

 DWORD dwSizeCMAC = sizeof(m_abCMAC);

 memset(abClientCryptogram, 0x00, sizeof(abClientCryptogram));

 memset(abServerCryptogram, 0x00, sizeof(abServerCryptogram));

 memset(m_abCMAC, 0x00, sizeof(m_abCMAC));

 memset(abIV, 0x00, sizeof(abIV));

 DWORD dwSize = sizeof(abKeyInput);

 if (*dwLengthAuthData != 32)

 return false;

 if (*dwLengthCl != 32)

 return false;

 memcpy(m_abUID, abServerAuthData, 8);

 for (int ii = 0; ii < 8; ++ii)

 {

 abKeyInput[8+ii] = ~m_abUID[ii];

 abKeyInput[ii] = m_abUID[ii];

 }

 // generate the basekey

 DWORD dwData = CRYPT_MODE_ECB;

Software Developer Guide, 5326-903, Rev A.0

Page 42 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 if (!CryptSetKeyParam(m_hMK, KP_MODE, (BYTE*)&dwData, 0))

 {

 return false;

 }

 if (!ImportKey(&m_hSCBK, abKeyInput, &dwSize, m_hMK))

 {

 return false;

 }

 dwSize = sizeof(pbData);

 if (CryptExportKey(m_hSCBK, NULL, PLAINTEXTKEYBLOB, 0, pbData, &dwSize))

 {

 memcpy(m_abSCBK, &pbData[dwSize-16], 16);

 }

 // save the server challange

 memcpy(m_abServerChallenge, &abServerAuthData[8], 8);

 // compute session keys

 if (!DeriveKeys((unsigned short)(m_abServerChallenge[0] << 8) + m_abServerChallenge[1]
))

 return false;

 // compute the client cryptogram

 memcpy(abClientCryptogram, m_abServerChallenge, sizeof(m_abServerChallenge));

 memcpy(&abClientCryptogram[8], m_abClientChallenge, sizeof(m_abClientChallenge));

 dwSize = sizeof(abClientCryptogram);

 if (!ComputeCryptogram(abClientCryptogram, &dwSize))

 return false;

 // compute the server cryptogram

 memcpy(abServerCryptogram, m_abClientChallenge, sizeof(m_abClientChallenge));

 memcpy(&abServerCryptogram[8], m_abServerChallenge, sizeof(m_abServerChallenge));

 dwSize = sizeof(abServerCryptogram);

 if (!ComputeCryptogram(abServerCryptogram, &dwSize))

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 43 of 72

© 2012 HID Global Corporation. All rights reserved.

 return false;

 // check server authentication data

 if (memcmp(&abServerAuthData[16], abServerCryptogram, sizeof(abServerCryptogram)) !=
0)

 return false;

 // check length of the buffer

 if (*dwLengthCl < 32)

 return false;

 // copy client auth data to the output buffer

 memcpy(abClientAuthData, abClientCryptogram, sizeof(abClientCryptogram));

 // calculate the C-MAC

 if (!ComputeMAC(abIV, abClientCryptogram, 0, sizeof(abClientCryptogram), m_abCMAC,
&dwSizeCMAC))

 return false;

 memcpy(&abClientAuthData[16], m_abCMAC, 16);

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

Page 44 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.6 Check Server Authentication 2
bool CSecureChannel::CheckServerAutentication(CString strServerAuthData, CString*
strClientAuthData)

{

 bool fRet = true;

 BYTE pbData1[100];

 BYTE pbData2[32];

 DWORD dwSize1;

 DWORD dwSize2;

 do{

 dwSize1 = sizeof(pbData1);

 if (!ConvertStringToHex(strServerAuthData, pbData1, &dwSize1))

 {

 fRet = false;

 break;

 }

 dwSize2 = sizeof(pbData2);

 if (!CheckServerAutentication(pbData1, &dwSize1, pbData2, &dwSize2))

 {

 fRet = false;

 break;

 }

 if (!ConvertHexToString(pbData2, dwSize2, strClientAuthData))

 {

 fRet = false;

 break;

 }

 } while (false);

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 45 of 72

© 2012 HID Global Corporation. All rights reserved.

7.7 Derive Keys
bool CSecureChannel::DeriveKeys(unsigned short usSeqCounter)

{

 BYTE abInput[16];

 DWORD dwSize = sizeof(abInput);

 DWORD dwData;

 BYTE pbData[100];

 memset((void*)abInput, 0x00, sizeof(abInput));

 dwData = CRYPT_MODE_ECB;

 if (!CryptSetKeyParam(m_hSCBK, KP_MODE, (BYTE*)&dwData, 0))

 {

 return false;

 }

 // generate the SMAC1

 abInput[0] = 0x01;

 abInput[1] = 0x01;

 abInput[2] = (BYTE)(usSeqCounter >> 8);

 abInput[3] = (BYTE) usSeqCounter;

 dwSize = sizeof(abInput);

 if (!ImportKey(&m_hSMAC1, abInput, &dwSize, m_hSCBK))

 return false;

 // generate the SMAC2

 memset((void*)abInput, 0x00, sizeof(abInput));

 abInput[0] = 0x01;

 abInput[1] = 0x02;

 abInput[2] = (BYTE)(usSeqCounter >> 8);

 abInput[3] = (BYTE) usSeqCounter;

 dwSize = sizeof(abInput);

 if (!ImportKey(&m_hSMAC2, abInput, &dwSize, m_hSCBK))

 return false;

Software Developer Guide, 5326-903, Rev A.0

Page 46 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 // generate the SENC

 memset((void*)abInput, 0x00, sizeof(abInput));

 abInput[0] = 0x01;

 abInput[1] = 0x82;

 abInput[2] = (BYTE)(usSeqCounter >> 8);

 abInput[3] = (BYTE) usSeqCounter;

 dwSize = sizeof(abInput);

 if (!ImportKey(&m_hSENC, abInput, &dwSize, m_hSCBK))

 return false;

 dwSize = sizeof(pbData);

 CryptExportKey(m_hSENC, NULL, PLAINTEXTKEYBLOB, 0, pbData, &dwSize);

 memcpy(m_abSENC, &pbData[dwSize-16], 16);

 dwSize = sizeof(pbData);

 CryptExportKey(m_hSMAC1, NULL, PLAINTEXTKEYBLOB, 0, pbData, &dwSize);

 memcpy(m_abSMAC1, &pbData[dwSize-16], 16);

 dwSize = sizeof(pbData);

 CryptExportKey(m_hSMAC2, NULL, PLAINTEXTKEYBLOB, 0, pbData, &dwSize);

 memcpy(m_abSMAC2, &pbData[dwSize-16], 16);

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 47 of 72

© 2012 HID Global Corporation. All rights reserved.

7.8 Compute Cryptogram
bool CSecureChannel::ComputeCryptogram(BYTE* abINOUT, DWORD* dwSize)

{

 DWORD dwData = CRYPT_MODE_ECB;

 DWORD dwLength = *dwSize;

 HCRYPTKEY hDuplicateKey;

 BYTE abIV[16];

 memset((void*)abIV, 0x00, sizeof(abIV));

 if(*dwSize != 16)

 return false;

 CryptDuplicateKey(m_hSENC, 0, 0, &hDuplicateKey);

 if (!CryptSetKeyParam(hDuplicateKey, KP_MODE, (BYTE*)&dwData, 0))

 return false;

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, abIV, 0))

 return false;

 if (!CryptEncrypt(hDuplicateKey,

 NULL,

 FALSE,

 0,

 abINOUT,

 dwSize,

 dwLength))

 return false;

 CryptDestroyKey(hDuplicateKey);

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

Page 48 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.9 Import Key
bool CSecureChannel::ImportKey(HCRYPTKEY* hKey, BYTE* abIN, DWORD* dwSize,
HCRYPTKEY hKeyIN)

{

 DWORD dwLength = *dwSize;

 bool fOK = true;

 BYTE* abIV[16];

 HCRYPTKEY hDuplicateKey;

 memset((void*)abIV, 0x00, sizeof(abIV));

 struct {

 BLOBHEADER hdr;

 DWORD cbKeySize;

 BYTE rgbKeyData [16];

 } myBlob;

 // generate the key

 CryptDuplicateKey(hKeyIN, 0, 0, &hDuplicateKey);

 do

 {

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, (const BYTE*)abIV, 0))

 {

 fOK = false;

 break;

 }

 if (!CryptEncrypt(hDuplicateKey,

 NULL,

 FALSE,

 0,

 abIN,

 dwSize,

 dwLength))

 {

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 49 of 72

© 2012 HID Global Corporation. All rights reserved.

 fOK = false;

 break;

 }

 // import the key

 myBlob.hdr.bType = PLAINTEXTKEYBLOB;

 myBlob.hdr.bVersion = CUR_BLOB_VERSION;

 myBlob.hdr.reserved = 0;

 myBlob.hdr.aiKeyAlg = CALG_AES_128;

 myBlob.cbKeySize = 16;

 memcpy(myBlob.rgbKeyData, abIN, 16);

 if (!CryptImportKey(m_hProv, (BYTE*)&myBlob, sizeof(myBlob), NULL, 0,
hKey))

 {

 fOK = false;

 break;

 }

 } while (false);

 CryptDestroyKey(hDuplicateKey);

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

Page 50 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.10 Compute Mac
bool CSecureChannel::ComputeMAC(BYTE *abIV, BYTE* abIN, unsigned int uiOffset,
DWORD dwSize, BYTE* abOUT, DWORD* dwSizeOUT)

{

 DWORD dwLength = dwSize + 16;

 DWORD dwNewSize = (DWORD)ceil((dwSize + 1.0) / 16.0) * 16;

 bool fOK = true;

 HCRYPTKEY hDuplicateKey;

 BYTE *abPadded = new BYTE [dwNewSize];

 DWORD dwPaddedSize = dwNewSize;

 BYTE *abPadded2 = new BYTE [dwNewSize];

 DWORD dwPaddedSize2 = dwNewSize;

 BYTE *abIV2 = new byte[16];

 // generate the key

 CryptDuplicateKey(m_hSMAC1, 0, 0, &hDuplicateKey);

 do

 {

 if ((dwSize == 0) || ((dwSize % 16) != 0))

 {

 if (!Pad(abIN, uiOffset, dwSize, abPadded, &dwPaddedSize))

 {

 fOK = false;

 break;

 }

 uiOffset = 0;

 }

 else

 {

 dwPaddedSize = dwSize;

 memcpy((void*)abPadded, abIN, (size_t)dwPaddedSize);

 }

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 51 of 72

© 2012 HID Global Corporation. All rights reserved.

 if (dwPaddedSize > 16)

 {

 memcpy(abPadded2, abPadded, dwPaddedSize);

 dwPaddedSize2 = dwPaddedSize -16;

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, abIV, 0))

 {

 fOK = false;

 break;

 }

 if (!CryptEncrypt(hDuplicateKey,

 NULL,

 FALSE,

 0,

 &abPadded2[uiOffset],

 &dwPaddedSize2,

 dwLength))

 {

 fOK = false;

 break;

 }

 if (dwPaddedSize2 > 0)

 {

 memcpy(abIV2, &abPadded2[dwPaddedSize2-16], 16);

 }

 }

 else

 {

 memcpy((void*)abIV2, (void*)abIV, 16);

 }

 CryptDestroyKey(hDuplicateKey);

 CryptDuplicateKey(m_hSMAC2, 0, 0, &hDuplicateKey);

Software Developer Guide, 5326-903, Rev A.0

Page 52 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, abIV2, 0))

 {

 fOK = false;

 break;

 }

 memcpy(abPadded2, &abPadded[uiOffset + dwPaddedSize -16], 16);

 dwPaddedSize2 = 16;

 if (!CryptEncrypt(hDuplicateKey,

 NULL,

 FALSE,

 0,

 abPadded2,

 &dwPaddedSize2,

 dwLength))

 {

 fOK = false;

 break;

 }

 if (dwPaddedSize2 > *dwSizeOUT)

 {

 fOK = false;

 break;

 }

 memcpy(abOUT, abPadded2, dwPaddedSize2);

 *dwSizeOUT = dwPaddedSize2;

 } while (false);

 CryptDestroyKey(hDuplicateKey);

 delete[] abIV2;

 delete[] abPadded;

 delete[] abPadded2;

 return fOK;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 53 of 72

© 2012 HID Global Corporation. All rights reserved.

7.11 Pad
bool CSecureChannel::Pad(BYTE* abIN, unsigned int uiOffset, DWORD dwSizeIN, BYTE*
abOUT, DWORD *dwSizeOUT)

{

 DWORD dwNewSize = (DWORD)ceil((dwSizeIN + 1.0) / 16.0) * 16;

 if (*dwSizeOUT < dwNewSize)

 return false;

 *dwSizeOUT = dwNewSize;

 memset((void*)abOUT, 0x00, dwNewSize);

 memcpy(abOUT, &abIN[uiOffset], (size_t)dwSizeIN);//)Array.Copy(input, offset, output, 0,
length);

 abOUT[dwSizeIN] = 0x80;

 return true;

}

7.12 Unpad
bool CSecureChannel::WrapInput(BYTE* abIN, DWORD dwINSize, BYTE* abOUT, DWORD
*dwOUTSize)

{

 BYTE* abPlainPadded;

 BYTE abComplementIV[16];

 bool fOK = true;

 HCRYPTKEY hDuplicateKey;

 DWORD dwPlainPadded = (DWORD)ceil((dwINSize + 1.0) / 16.0) * 16;

 DWORD dwSizeMAC = sizeof(m_abCMAC);

 abPlainPadded = new BYTE[dwPlainPadded];

 do

 {

 if (!Pad(abIN, 0, dwINSize, abPlainPadded, & dwPlainPadded))

 {

Software Developer Guide, 5326-903, Rev A.0

Page 54 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 fOK = false;

 break;

 }

 for (int ii = 0; ii < 16; ++ii)

 {

 abComplementIV[ii] = ~m_abRMAC[ii];

 }

 CryptDuplicateKey(m_hSENC, 0, 0, &hDuplicateKey);

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, abComplementIV, 0))

 {

 fOK = false;

 break;

 }

 if (!CryptEncrypt(hDuplicateKey,

 NULL,

 FALSE,

 0,

 abPlainPadded,

 &dwPlainPadded,

 dwPlainPadded))

 {

 fOK = false;

 break;

 }

 if (!ComputeMAC(m_abRMAC, abPlainPadded, 0, dwPlainPadded,
m_abCMAC, &dwSizeMAC))

 {

 fOK = false;

 break;

 }

 if (*dwOUTSize < (dwSizeMAC + dwPlainPadded))

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 55 of 72

© 2012 HID Global Corporation. All rights reserved.

 {

 fOK = false;

 break;

 }

 memcpy(abOUT, abPlainPadded, dwPlainPadded);

 memcpy(&abOUT[dwPlainPadded], m_abCMAC, dwSizeMAC);

 *dwOUTSize = dwSizeMAC + dwPlainPadded;

 } while (false);

 CryptDestroyKey(hDuplicateKey);

 delete[] abPlainPadded;

 return fOK;

}

Software Developer Guide, 5326-903, Rev A.0

Page 56 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.13 Wrap
bool CSecureChannel::WrapInput(CString strIN, CString* strOUT)

{

 bool fRet = true;

 BYTE *pbData1 = new BYTE[strIN.GetLength() / 2];

 DWORD dwSize1 = strIN.GetLength() / 2;

 BYTE *pbData2 = new BYTE[((DWORD)ceil((dwSize1 + 1.0) / 16.0) + 1) * 16];

 DWORD dwSize2 = ((DWORD)ceil((dwSize1 + 1.0) / 16.0) + 1) * 16;

 do{

 if (!ConvertStringToHex(strIN, pbData1, &dwSize1))

 {

 fRet = false;

 break;

 }

 if (!WrapInput(pbData1, dwSize1, pbData2, &dwSize2))

 {

 fRet = false;

 break;

 }

 if (!ConvertHexToString(pbData2, dwSize2, strOUT))

 {

 fRet = false;

 break;

 }

 } while (false);

 delete[] pbData1;

 delete[] pbData2;

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 57 of 72

© 2012 HID Global Corporation. All rights reserved.

7.14 Unwrap 1
bool CSecureChannel::Unwrap(BYTE* abIN, DWORD dwINSize, BYTE* abOUT, DWORD
*dwOUTSize)

{

 bool fOK = true;

 BYTE abComplementIV[16];

 DWORD dwEncrypted = dwINSize - 16;

 BYTE *abEncrypted = new BYTE[dwEncrypted];

 DWORD dwUnPadded = dwINSize - 16;

 BYTE *abUnPadded = new BYTE[dwUnPadded];

 DWORD dwMACSize = sizeof(m_abRMAC);

 HCRYPTKEY hDuplicateKey;

 CryptDuplicateKey(m_hSENC, 0, 0, &hDuplicateKey);

 do

 {

 if (dwINSize < 16)

 {

 fOK = false;

 break;

 }

 // compute and check the MAC

 if (!ComputeMAC(m_abCMAC, abIN, 0, dwINSize - 16, m_abRMAC,
&dwMACSize))

 {

 fOK = false;

 break;

 }

 if (memcmp(m_abRMAC, &abIN[dwINSize-16], dwMACSize) != 0)

 {

 fOK = false;

 break;

Software Developer Guide, 5326-903, Rev A.0

Page 58 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 }

 if (dwINSize > 16)

 {

 for (int ii = 0; ii < 16; ++ii)

 {

 abComplementIV[ii] = ~m_abCMAC[ii];

 }

 memcpy(abEncrypted, abIN, dwINSize - 16);

 dwEncrypted = dwINSize - 16;

 if (!CryptSetKeyParam(hDuplicateKey, KP_IV, abComplementIV, 0))

 {

 fOK = false;

 break;

 }

 if (!CryptDecrypt(hDuplicateKey, NULL, FALSE, 0, abEncrypted,
&dwEncrypted))

 {

 fOK = false;

 break;

 }

 if (!UnPad(abEncrypted, dwEncrypted, abUnPadded, &dwUnPadded))

 {

 fOK = false;

 break;

 }

 memcpy(abOUT, abUnPadded, dwUnPadded);

 *dwOUTSize = dwUnPadded;

 }

 else

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 59 of 72

© 2012 HID Global Corporation. All rights reserved.

 {

 *dwOUTSize = 0;

 }

 } while (false);

 delete[] abUnPadded;

 delete[] abEncrypted;

 CryptDestroyKey(hDuplicateKey);

 if (!fOK)

 *dwOUTSize = 0;

 return fOK;

}

7.15 Unwrap 2
bool CSecureChannel::Unwrap(CString strIN, CString* strOUT)

{

 bool fRet = true;

 BYTE *pbData1;

// pbData1 = (BYTE*)malloc(strIN.GetLength() / 2);

 pbData1 = new BYTE[(strIN.GetLength() / 2) + 1];//(strIN.GetLength() / 2) + 1

 BYTE *pbData2;

 pbData2 = new BYTE[(strIN.GetLength() / 2) + 1];

// pbData2 = (BYTE*)malloc(strIN.GetLength() / 2);

 DWORD dwSize1;

 DWORD dwSize2;

// memset(pbData1, 0x00, (strIN.GetLength() / 2) + 1);

 memset(pbData2, 0x00, (strIN.GetLength() / 2) + 1);

 do{

 dwSize1 = strIN.GetLength() / 2;

 if (!ConvertStringToHex(strIN, pbData1, &dwSize1))

 {

 fRet = false;

 break;

Software Developer Guide, 5326-903, Rev A.0

Page 60 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

 }

 dwSize2 = strIN.GetLength() / 2;

 if (!Unwrap(pbData1, dwSize1, pbData2, &dwSize2))

 {

 fRet = false;

 break;

 }

 if (!ConvertHexToString(pbData2, dwSize2, strOUT))

 {

 fRet = false;

 break;

 }

 } while (false);

 delete[] pbData2;

 delete[] pbData1;

 return fRet;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 61 of 72

© 2012 HID Global Corporation. All rights reserved.

7.16 Covert String to Hex
bool CSecureChannel::ConvertStringToHex(CString strInput, BYTE *acOutput, DWORD
*dwLength)

{

 DWORD dwLengthIn = *dwLength;

 int iResult = 0;

 DWORD ii = 0;

 DWORD bHex = 0x00;

 for (ii = 0; ii < strInput.GetLength()/2; ++ii)

 {

 if (ii < dwLengthIn)

 {

 iResult = sscanf_s(strInput.Mid(ii * 2, 2), "%02x", &bHex);

 (BYTE)acOutput[ii] = (BYTE)bHex;

 if (iResult != 1)

 return false;

 }

 else

 return false;

 }

 *dwLength = ii;

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

Page 62 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

7.17 Convert Hex To String
bool CSecureChannel::ConvertHexToString(BYTE *acInput, DWORD dwLength, CString
*strOutput)

{

 CString strTemp;

 *strOutput = "";

 for (DWORD ii = 0; ii < dwLength; ++ii)

 {

 strTemp = *strOutput;

 strOutput->Format("%s%02X", strTemp, (unsigned char)acInput[ii]);

 }

 return true;

}

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 63 of 72

© 2012 HID Global Corporation. All rights reserved.

8 Appendix Reader Configuration References

8.1 Reader Capabilities
Table 2 - Reader Capabilities Structure

Root Branch

readerCapabilities [A0h] deviceID [81h]
productName [82h]
productPlatform [83h]
enabledCLFeatures [84h]
frirmwareVersion [85h]
sioProcessorVersion[86h]
sdrVersion [87h]
hfControllerVersion [88h]
hardwareVersion [89h]
hostInterfaces [8Ah]

numberOfContactlessSlots [8Ch]

humanInterfaces [AEh]
vendorName [8Fh]
sioProcessorFirmwareID [90h]
exchangeLevel [91h]
serialNumber [92h]
hfControllerType [93h]

8.1.1 Device ID
Relative TLV: A0 02 81 00
Access: Read-only
Type: OCTET STRING
Length: 2
Value: 00 01
Description: Device Identifier
Get APDU FF70076B 08 A206A004A0028100 00

Software Developer Guide, 5326-903, Rev A.0

Page 64 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

8.1.2 Product Name
Relative TLV: A0 02 82 00
Access: Read-only
Type: 0 terminated String
Length: 13
Value: “OMNIKEY 5326”
Description: Name of product
Get APDU FF70076B 08 A206A004A0028200 00

8.1.3 Product Platform
Relative TLV: A0 02 83 00
Access: Read-only
Type: 0 terminated String
Length: 8
Value: “AviatoR”
Description: Name of processor platform
Get APDU FF70076B 08 A206A004A0028300 00

8.1.4 Enabled Contactless Features
Relative TLV: A0 02 84 00
Access: Read-only
Type: OCTET STRING
Length: 2
Value: 0000 1000 0011 0000b
Description: Flags for supported contactless features

Bit 4 – SIO Processor available
Bit 5 – LF Processor available (SDR)
Bit 11 – PicoPass 15693-2 support available

Get APDU FF70076B 08 A206A004A0028400 00

8.1.5 Firmware Version
Relative TLV: A0 02 85 00
Access: Read-only
Type: OCTET STRING
Length: 3
Value: XX YY ZZ
Description: FwVersionMajor + FwVersionMinor + BuildNr
Get APDU FF70076B 08 A206A004A0028500 00

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 65 of 72

© 2012 HID Global Corporation. All rights reserved.

8.1.6 SIO Processor Version
Relative TLV: A0 02 86 00
Access: Read-only
Type: OCTET STRING
Length: 2
Value: XX YY
Description: Version number of SIO Processor
Get APDU FF70076B 08 A206A004A0028600 00

8.1.7 SDR Version
Relative TLV: A0 02 87 00
Access: Read-only
Type: OCTET STRING
Length: 6
Value: XX XX XX XX XX 00
Description: Version string of SDR (low frequency processor)

NULL terminated string for example, “03.07”
Get APDU FF70076B 08 A206A004A0028700 00

8.1.8 HF Controller Version
Relative TLV: A0 02 88 00
Access: Read-only
Type: OCTET STRING
Length: 1
Value: XX
Description: CLRC663 version register
Get APDU FF70076B 08 A206A004A0028800 00

8.1.9 Hardware Version
Relative TLV: A0 02 89 00
Access: Read-only
Type: 0 terminated string
Length: variable
Value: End Item Number ; Revision; Version Index
Description: Hardware version string according AGILE:

first part = End Item Number + Delimiter
second part = Revision + Delimiter
third part = Version Index

Get APDU FF70076B 08 A206A004A0028900 00

Software Developer Guide, 5326-903, Rev A.0

Page 66 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

8.1.10 Host Interface Flags
Relative TLV: A0 02 8A 00
Access: Read-only
Type: OCTET STRING
Length: 1
Value: 0000 0010b
Description: Flags for available Host interfaces

Bit 1 – USB available
Get APDU FF70076B 08 A206A004A0028A00 00

8.1.11 Number of Contact Slots
Relative TLV: A0 02 8B 00
Access: Read-only
Type: UNSIGNED INTEGER 8
Length: 1
Value: 0
Description: Number of available contact slots
Get APDU FF70076B 08 A206A004A0028B00 00

8.1.12 Number of Contactless Slots
Relative TLV: A0 02 8C 00
Access: Read-only
Type: UNSIGNED INTEGER 8
Length: 1
Value: 1
Description: Number of available contactless slots
Get APDU FF70076B 08 A206A004A0028C00 00

8.1.13 Number of Antennas
Relative TLV: A0 02 8D 00
Access: Read-only
Type: UNSIGNED INTEGER 8
Length: 1
Value: 1
Description: Number of available high frequency antennas
Get APDU FF70076B 08 A206A004A0028D00 00

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 67 of 72

© 2012 HID Global Corporation. All rights reserved.

8.1.14 Human Interfaces Descriptor
Relative TLV: A0 02 AE 00
Access: Read-only
Type: UNSIGNED INTEGER 8
Length: variable
Value: Constructed TLV structure
Description: TLV Description of available human interfaces
Get APDU FF70076B 08 A206A004A002AE00 00

8.1.15 Vendor Name
Relative TLV: A0 02 8F 00
Access: Read-only
Type: 0 TERMINATED STRING
Length: 11
Value: “HID Global”
Description: Vendor name
Get APDU FF70076B 08 A206A004A0028F00 00

8.1.16 SIO Processor Firmware ID
Relative TLV: A0 02 90 00
Access: Read-only
Type: OCTET STRING
Length: 6
Value: XX XX XX XX XX XX
Description: SIO processor firmware identifier
Get APDU FF70076B 08 A206A004A0029000 00

8.1.17 Exchange Level Flags
Relative TLV: A0 02 91 00
Access: Read-only
Type: OCTET STRING
Length: 1
Value: 0000 0001b
Description: CCID exchange level flags:

Bit 0 – Short APDU exchange level with CCID
Get APDU FF70076B 08 A206A004A0029100 00

Software Developer Guide, 5326-903, Rev A.0

Page 68 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

8.1.18 Serial Number
Relative TLV: A0 02 92 00
Access: Read-only
Type: OCTET STRING
Length: 9
Value: XX XX XX XX XX XX XX XX XX
Description: Unique IFD serial number
Get APDU FF70076B 08 A206A004A0029200 00

8.1.19 HF Controller Type
Relative TLV: A0 02 93 00
Access: Read-only
Type: 0 TERMINATED STRING
Length: 6
Value: “RC663”
Description: Type of integrated high frequency front end

controller
Get APDU FF70076B 08 A206A004A0029300 00

8.1.20 Size of User EEPROM
Relative TLV: A0 02 94 00
Access: Read-only
Type: UNSIGNED INTEGER 16
Length: 2
Value: 04 00
Description: Size of user EEPROM for free use
Get APDU FF70076B 08 A206A004A0029400 00

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 69 of 72

© 2012 HID Global Corporation. All rights reserved.

8.2 Reader Configuration Control
Root Branch

readerConfigurationControl [A9h] applySetValues [80h]
restoreFactoryDefaults [81h]

8.2.1 Apply Set Values
Relative TLV: A9 02 80 00
Access: Not accessible
Type: COMMAND
Length: 0 byte
Description: Apply the Configuration items for the runtime system
Get APDU FF70076B 08 A206A104A9028000

8.2.2 Restore Factory Defaults
Relative TLV: A9 02 81 00
Access: Not accessible
Type: COMMAND
Length: 0 byte
Description: Restore the factory defaults.

This means that any custom values will be lost.
Get APDU FF70076B 08 A206A104A9028100

Software Developer Guide, 5326-903, Rev A.0

Page 70 of 72 March 2012

© 2012 HID Global Corporation. All rights reserved.

9 Appendix Definitions, Abbreviations and Symbols

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CLA Class byte of an APDU

DER Distinguished Encoding Rules

MAC Message Authentication Code

MSDN Microsoft® Developer Network

OID Object Identifier

PAC Physical Access Control

PACS PAC Physical Access Control Services

PDU Protocol Data Unit

PC/SC Personal Computer/Smart Card

SIO Secure Identity Object

Software Developer Guide, 5326-903, Rev A.0

March 2012 Page 71 of 72

© 2012 HID Global Corporation. All rights reserved.

10 Appendix References
[ISO 7816-4] ISO 7816-4

Identification cards — Integrated circuit cards -
Part 4: Organization, security and commands for
Interchange
Second edition - 2005-01-15

[ISO 8825] ISO/IEC8825 ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER)
Fourth edition 2008-12-15
or
X.690
Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER)

[ISO 9797-1] ISO 9797-1
Information technology - Security techniques –
Message Authentication Codes (MACs) Part 1:
Mechanisms using a block cipher
Second edition - 2011-03-01

[PCSC-3-Sup-CL] Interoperability Specification for ICCs and Personal Computer Systems
Part 3. Supplemental Document for Contactless ICCs
Revision 2.02.00

[PCSC-3] Interoperability Specification for ICCs and Personal Computer Systems
Part 3. Requirements for PC-Connected Interface Devices
Revision 2.01.09

[PCSC-3-Sup] Interoperability Specification for ICCs and Personal Computer Systems
Part 3. Supplemental Document
Revision 2.01.08

[PCSC-3-AMD] Interoperability Specification for ICCs and Personal Computer Systems
Part 3. Requirements for PC-Connected Interface Devices - AMENDMENT 1
Revision 2.01.09

HID Global Headquarters:

North America: +1 949 732 2000

Toll Free: 1 800 237 7769
Europe, Middle East, Africa: +49 6123 791 0

Asia Pacific: +852 3160 9800

Latin America: +52 477 779 1492

support.hidglobal.com

h i d g l o b a l . c o m

	OMNIKEY 5326 DFR Software Developer Guide
	Contents

	About this Guide
	Purpose
	How you should read this guide
	How this guide is organized

	Overview
	Product Description
	Features
	1.1 Getting Started
	1.1.1 Driver installation

	2 PC/SC 2.02
	2.1 Overview
	2.2 How to access Contactless Cards or the reader through PC/SC
	2.3 Contactless specific PC/SC commands
	2.3.1 Get Data
	2.3.2 Vendor specific generic command
	2.3.3 Load Keys

	3 Objects and Items
	3.1 Overview
	3.2 SIO Processor
	3.3 The OID Tree
	3.4 Secure Channel
	3.4.1 Overview
	3.4.2 Initialize Secure Channel (AUTH1)
	3.4.3 Initialize Secure Channel (AUTH2)
	3.4.4 Terminate Secure Channel
	3.4.5 Security Engine Selection

	4 Migration Scenarios
	4.1 Get CSN
	4.2 Get PAC Bits
	4.3 Update Reader Key

	5 Reader Configuration
	5.1 Overview
	5.2 Example Get Product Name

	6 Code Examples
	6.1 Initialize Secure Channel
	6.2 Terminate Secure Channel
	6.3 Transmit IFD Specific
	6.4 Transmit PCSC
	6.5 Transmit PCSC UID
	6.6 Get UID
	6.7 Transmit IFD Specific
	6.8 Get PAC Bits

	7 Secure Channel Sample Class Implementation
	7.1 Constructor
	7.2 Destructor
	7.3 Initialize 1
	7.4 Initialize 2
	7.5 Check Server Authentication 1
	7.6 Check Server Authentication 2
	7.7 Derive Keys
	7.8 Compute Cryptogram
	7.9 Import Key
	7.10 Compute Mac
	7.11 Pad
	7.12 Unpad
	7.13 Wrap
	7.14 Unwrap 1
	7.15 Unwrap 2
	7.16 Covert String to Hex
	7.17 Convert Hex To String

	8 Appendix Reader Configuration References
	8.1 Reader Capabilities
	8.1.1 Device ID
	8.1.2 Product Name
	8.1.3 Product Platform
	8.1.4 Enabled Contactless Features
	8.1.5 Firmware Version
	8.1.6 SIO Processor Version
	8.1.7 SDR Version
	8.1.8 HF Controller Version
	8.1.9 Hardware Version
	8.1.10 Host Interface Flags
	8.1.11 Number of Contact Slots
	8.1.12 Number of Contactless Slots
	8.1.13 Number of Antennas
	8.1.14 Human Interfaces Descriptor
	8.1.15 Vendor Name
	8.1.16 SIO Processor Firmware ID
	8.1.17 Exchange Level Flags
	8.1.18 Serial Number
	8.1.19 HF Controller Type
	8.1.20 Size of User EEPROM

	8.2 Reader Configuration Control
	8.2.1 Apply Set Values
	8.2.2 Restore Factory Defaults

	9 Appendix Definitions, Abbreviations and Symbols
	10 Appendix References

