
Approved by and published under the authority of the Secretary General

INTERNATIONAL CIVIL AVIATION ORGANIZATION

Doc 9303

Machine Readable Travel Documents

Part 11: Security Mechanisms for MRTDs

Eighth Edition, 2021

ORGANIZACIÓN DE AVIACIÓN CIVIL INTERNACIONAL

Doc XXXX

Volume X — XXXXXXXX
XXXX Edition, 20XX

XXXXXXXXXXXXXXX
XXXXXXXX

Aprobada por la Secretaria General y publicada bajo su responsabilidad

Doc XXXX

XXXXXXXX

Approved by and published under the authority of the Secretary General

Doc XXXX

Volume X — XXXXXXXX
XXXX Edition, 20XX

XXXXXXXXXXXXXXX
XXXXXXXX

Doc XXXX

Volume X — XXXXXXXX
XXXX Edition, 20XX

XXXXXXXXXXXXXXX
XXXXXXXX

Утверждено Генеральным секретарем и опубликовано с его санкции

Международная организация гражданской авиации

Doc XXXX

Volume X — XXXXXXXX
XXXX Edition, 20XX

Approuvé par la Secrétaire générale et publié sous son autorité

ORGANISATION DE L’AVIATION CIVILE INTERNATIONALE

XXXXXXXXXXXXXXX
XXXXXXXX

Approved by and published under the authority of the Secretary General

INTERNATIONAL CIVIL AVIATION ORGANIZATION

Doc 9303

Machine Readable Travel Documents

Part 11: Security Mechanisms for MRTDs

Eighth Edition, 2021

Published in separate English, Arabic, Chinese, French, Russian
and Spanish editions by the
INTERNATIONAL CIVIL AVIATION ORGANIZATION
999 Robert-Bourassa Boulevard, Montréal, Quebec, Canada H3C 5H7

Downloads and additional information are available at www.icao.int/Security/FAL/TRIP

Doc 9303, Machine Readable Travel Documents
Part 11 — Security Mechanisms for MRTDs
Order No.: 9303P11
ISBN 978-92-9265-419-1 (print version)
ISBN 978-92-9275-421-1 (electronic version)

© ICAO 2021

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without prior
permission in writing from the International Civil Aviation Organization.

(iii)

AMENDMENTS

Amendments are announced in the supplements to the Products and Services
Catalogue; the Catalogue and its supplements are available on the ICAO
website at www.icao.int. The space below is provided to keep a record of such
amendments.

RECORD OF AMENDMENTS AND CORRIGENDA

AMENDMENTS CORRIGENDA

No. Date Entered by No. Date Entered by

1 14/6/24 ICAO

The designations employed and the presentation of the material in this publication do not
imply the expression of any opinion whatsoever on the part of ICAO concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the
delimitation of its frontiers or boundaries.

 (v)

TABLE OF CONTENTS

 Page

1. SCOPE ... 1

2. ASSUMPTIONS AND NOTATIONS .. 1

 2.1 Requirements for eMRTD Chips and Terminals .. 2
 2.2 Notations .. 2

3. SECURING ELECTRONIC DATA ... 3

4. ACCESS TO THE CONTACTLESS IC .. 4

 4.1 Compliant Configurations ... 5
 4.2 Chip Access Procedure .. 6
 4.3 Basic Access Control ... 7
 4.4 Password Authenticated Connection Establishment .. 10

5. AUTHENTICATION OF DATA ... 23

 5.1 Passive Authentication ... 23

6. AUTHENTICATION OF THE CONTACTLESS IC ... 24

 6.1 Active Authentication .. 25
 6.2 Chip Authentication .. 28

7. ADDITIONAL ACCESS CONTROL MECHANISMS ... 34

 7.1 Terminal Authentication ... 34
 7.2 Encryption of Additional Biometrics .. 44

8. INSPECTION SYSTEM .. 44

 8.1 Basic Access Control ... 44
 8.2 Password Authenticated Connection Establishment .. 45
 8.3 Passive Authentication ... 45
 8.4 Active Authentication .. 45
 8.5 Chip Authentication .. 46
 8.6 Terminal Authentication ... 46
 8.7 Decryption of Additional Biometrics ... 46

9. COMMON SPECIFICATIONS .. 47

 9.1 ASN.1 Structures .. 47
 9.2 Information on Supported Protocols and Supported Applications .. 47
 9.3 APDUs .. 55
 9.4 Public Key Data Objects .. 56

(vi) Machine Readable Travel Documents

Page

 9.5 Domain Parameters ... 58
 9.6 Key Agreement Algorithms .. 60
 9.7 Key Derivation Mechanism... 60
 9.8 Secure Messaging ... 62

10. REFERENCES (NORMATIVE) .. 67

APPENDIX A TO PART 11. ENTROPY OF MRZ-DERIVED ACCESS KEYS (INFORMATIVE) App A-1

APPENDIX B TO PART 11. POINT ENCODING FOR THE ECDH-INTEGRATED MAPPING

(INFORMATIVE) ... App B-1

 B.1 High-level Description of the Point Encoding Method .. App B-1
 B.2 Implementation for Affine Coordinates ... App B-2
 B.3 Implementation for Jacobian Coordinates .. App B-2

APPENDIX C TO PART 11. CHALLENGE SEMANTICS (INFORMATIVE) .. App C-1

APPENDIX D TO PART 11. WORKED EXAMPLE: BASIC ACCESS CONTROL (INFORMATIVE) App D-1

 D.1 Compute Keys from Key Seed (Kseed) .. App D-1
 D.2 Derivation of Document Basic Access Keys (KEnc and KMAC) ... App D-2
 D.3 Authentication and Establishment of Session Keys ... App D-3
 D.4 Secure Messaging ... App D-5

APPENDIX E TO PART 11. WORKED EXAMPLE: PASSIVE AUTHENTICATION (INFORMATIVE) App E-1

APPENDIX F TO PART 11. WORKED EXAMPLE: ACTIVE AUTHENTICATION (INFORMATIVE) App F-1

APPENDIX G TO PART 11. WORKED EXAMPLE: PACE – GENERIC MAPPING (INFORMATIVE) App G-1

 G.1 ECDH based example .. App G-1
 G.2 DH based example ... App G-10

APPENDIX H TO PART 11. WORKED EXAMPLE: PACE – INTEGRATED MAPPING
 (INFORMATIVE) ... App H-1

 H.1 ECDH based example .. App H-1
 H.2 DH based example ... App H-4

APPENDIX I TO PART 11. WORKED EXAMPLE: PACE – PACE CA MAPPING
 (INFORMATIVE) ... App I-1

 I.1 ECDH based example .. App I-1

APPENDIX J TO PART 11. INSPECTION PROCEDURES (INFORMATIVE) ... App J-1

 J.1 Inspection Procedure for eMRTD Application .. App J-1
 J.2 Inspection Procedure for Multi-application eMRTDs .. App J-2

Chapter 1. Table of Contents (vii)

(vii)

APPENDIX K TO PART 11. EUROPEAN EXTENDED ACCESS CONTROL (INFORMATIVE) App K-1

 K.1 Access Rights ... App K-1
 K.2 EF.CVCA .. App K-2

 1

1. SCOPE

Part 11 to Doc 9303 provides specifications to enable States and suppliers to implement cryptographic security features
for electronic machine readable travel documents (“eMRTDs”) offering contactless integrated circuit (IC) access.
Cryptographic protocols are specified to:

 • prevent skimming of data from the contactless IC;

 • prevent eavesdropping on the communication between contactless IC and reader;

 • provide authentication of the data stored on the contactless IC based on the Public Key Infrastructure

(PKI) described in Part 12; and

 • provide authentication of the contactless IC itself.

The Eighth Edition of Doc 9303 incorporates the specifications for the optional Travel Records, Visa Records, and
Additional Biometrics applications (known as LDS2 applications) as an optional extension of the eMRTD. This part of Doc
9303 includes the necessary extended access control protocols to protect writing and reading of the data of the respective
LDS2 applications. These access control protocols may also be used for the protection of the secondary biometrics in the
eMRTD Application.

The authentication of the data stored on the contactless IC is the basic security feature to enable the use of the IC for
manual and/or automated inspection. This feature is therefore REQUIRED.

Implementation of a protocol to prevent skimming of the data stored on the contactless IC and to prevent eavesdropping
on the communication between IC and terminal is REQUIRED.

Implementation of the other protocols is OPTIONAL, allowing the issuing State or organization to decide on the necessary
set of security features according to national regulations/demands.

This part shall be read in conjunction with the following Parts of Doc 9303:

 • Part 1 — Introduction;

 • Part 10 — Logical Data Structure (LDS) for Storage of Biometrics and Other Data in the Contactless

Integrated Circuit (IC); and

 • Part 12 — Public Key Infrastructure for MRTDs.

2. ASSUMPTIONS AND NOTATIONS

It is assumed that the reader of this document is familiar with the concepts and mechanisms offered by public key
cryptography and public key infrastructures.

While the use of public key cryptography techniques adds some complexity to the implementation of eMRTDs, such
techniques add value in that they will provide front-line border control points with an additional measure to determine the
authenticity of the eMRTD. It is assumed that the use of such a technique is not the sole measure for determining
authenticity and it SHOULD NOT be relied upon as a single determining factor.

2 Machine Readable Travel Documents

In the event that the data from the contactless IC cannot be used, for instance as a result of a certificate revocation or an
invalid signature verification, or if the contactless IC was left intentionally blank (see Section 4.5.4 of Doc 9303-10), the
eMRTD is not necessarily invalidated. In such cases a receiving State MAY rely on other document security features for
validation purposes.

2.1 Requirements for eMRTD Chips and Terminals

This part of Doc 9303 specifies requirements for implementations of eMRTD chips (or, equivalently, IC) and terminals
(or inspection systems). While eMRTD chips must comply with those requirements according to the terminology described
in Doc 9303-1, requirements for terminals are to be interpreted as guidance, i.e. interoperability of eMRTD chip and
terminal are only guaranteed if the terminal complies with those requirements, otherwise the interaction with the eMRTD
chip will either fail or the behaviour of the eMRTD chip is undefined. In general, the eMRTD chip need not enforce
requirements related to terminals unless the security of the eMRTD chip is directly affected.

2.2 Notations

The following notations are used to denote cryptographic primitives in an algorithm independent way:

 • Encryption of clear text S with symmetric key K: E(K, S);

 • Decryption of cipher text C with symmetric key K: D(K, C);

 • The operation for computing a hash over a message m is denoted by H(m).

 • Computing a Message Authentication Code with symmetric key K over message M: MAC(K ,M);

 • Key agreement based on asymmetric key pairs (SK, PK) and (SK’, PK’) and domain parameters

D: KA(SK,PK’,D) / KA(SK’,PK,D);

 • Key derivation from a shared secret S: KDF (S);

 • Signing a message m with private key SKIFD is denoted by s = Sign(SKIFD, m);

 • Verifying the resulting signature s with public key PKIFD and message m: Verify(PKIFD, s, m).

 • Computing a compressed representation of a public key PK: Comp(PK).

Part 11. Security Mechanisms for MRTDs 3

3. SECURING ELECTRONIC DATA

Besides Passive Authentication by digital signatures and Chip Access Control, issuing States or organizations MAY
choose additional security, using more complex ways of securing the contactless IC and its data.

Accessing an eMRTD comprises the following steps:

 1. Gain access to the contactless IC of the eMRTD (Section 4)

 2. Authentication of data (Section 5)

 3. Authentication of the chip (Section 6)

 4. Additional access control mechanisms (Section 7)

 5. Reading data (see Doc 9303-10).

Different protocols are available for the different steps. The exact configuration of an eMRTD is chosen by the issuing
State or organization. The options given in Table 1 can be suitably combined to achieve additional security according to
the requirements of issuers.

Inspection Procedures for different configurations of eMRTDs are described in Appendix J.

Table 1. Securing Electronic Data (Summary)

Method
Contactless

IC
Inspection

System Benefits Note

BASELINE SECURITY METHOD

Passive Authentication
(Section 5.1)

m m Proves that the contents of
the SOD and the LDS are
authentic and not changed.

Does not prevent an exact
copy or IC substitution.
Does not prevent
unauthorized access.
Does not prevent skimming.

ADVANCED SECURITY METHODS

Comparison of
conventional
MRZ(OCR-B) and
IC-based MRZ(LDS)

n/a o Proves that contactless IC’s
content and physical eMRTD
belong together.

Adds (minor) complexity.
Does not prevent an exact
copy of contactless IC and
conventional document.

Active Authentication
(Section 6.1)

o o Prevents copying the SOD
and proves that it has been
read from the authentic
contactless IC.
Proves that the contactless
IC has not been substituted.

Does not prevent
unauthorized access.
Adds complexity.
Chip Authentication is
REQUIRED for LDS2.

Chip Authentication
(Section 6.2)

o/c o

4 Machine Readable Travel Documents

Method
Contactless

IC
Inspection

System Benefits Note

Basic Access Control
(BAC)
(Section 4.3)

c
(see also 4.1)

m
(see also 4.1)

Prevents skimming and
misuse.
Prevents eavesdropping on
the communications
between eMRTD and
inspection system (when
used to set up encrypted
session channel).

Does not prevent an exact
copy or IC substitution
(requires also copying of the
conventional document).
Adds complexity. At least
one of BAC or PACE SHALL
be supported by the
eMRTD. PACE is
REQUIRED for LDS2.
PACE offers better
protection against
eavesdropping than BAC.
See also Appendix A.

Password
Authenticated
Connection
Establishment (PACE)
(Section 4.4)

r/c
(see also 4.1)

m
(see also 4.1)

Terminal Authentication
(Section 7.1)

o/c o Prevents unauthorized
access to sensitive data.
Prevents skimming of
sensitive data.

Requires additional key
management.
Does not prevent an exact
copy or IC substitution
(requires also copying of the
conventional document).
Adds complexity. Terminal
Authentication is
REQUIRED for LDS2.

Data Encryption
(Section 7.2)

o o Secures additional
biometrics.
Does not require processor-
ICs.

Requires complex
decryption key
management.
Does not prevent an exact
copy or IC substitution.
Adds complexity.

m = REQUIRED, r = RECOMMENDED, o = OPTIONAL, c = CONDITIONAL, n/a = not applicable.

 Note.— See Section 4 for details on compliant configurations of contactless ICs with respect to the
implementation of Basic Access Control and Password Authenticated Connection Establishment.

Implementation of advanced security methods as listed in Table 1 does not affect ICAO compliance.

4. ACCESS TO THE CONTACTLESS IC

Adding a contactless IC without access control to an eMRTD introduces two new attack possibilities:

 • the data stored in the contactless IC can be electronically read without authorizing this reading of the

document (skimming); and

 • the unencrypted communication between a contactless IC and a reader can be eavesdropped within a

distance of several metres.

Part 11. Security Mechanisms for MRTDs 5

While there are physical measures possible against skimming (e.g. shielding using a metal mesh in the cover of a passport
booklet), these do not address eavesdropping. Therefore, it is understood that issuing States or organizations SHALL
implement a Chip Access Control mechanism, i.e. an access control mechanism that in effect requires the knowledge of
the bearer of the eMRTD that the data stored in the contactless IC is being read in a secure way. This Chip Access Control
mechanism prevents skimming as well as eavesdropping.

A contactless IC that is protected by a Chip Access Control mechanism denies access to its contents unless the inspection
system can prove that it is authorized to access the contactless IC. This proof is given in a cryptographic protocol, where
the inspection system proves knowledge of the information derived from the physical document.

The inspection system MUST be provided with this information prior to being able to read the contactless IC. The
information has to be retrieved optically/visually from the eMRTD (e.g. from the MRZ). It also MUST be possible for an
inspector to enter this information manually in the inspection system in case machine-reading of the information is not
possible.

Assuming that the information from the physical document cannot be obtained from an unviewed document (e.g. since
the information is derived from the optically read MRZ), it is accepted that the eMRTD was knowingly handed over for
inspection. Due to the encryption of the channel, eavesdropping on the communication would require a considerable effort.

This section defines two mechanisms for Chip Access Control:

 • Basic Access Control (BAC, Section 4.3), which is based purely on symmetric cryptography; and

 • Password Authenticated Connection Establishment (PACE, Section 4.4), which employs asymmetric

cryptography to provide higher entropy session keys.

See also Appendix A for additional information on the strength of session keys.

4.1 Compliant Configurations

The following configurations comply with this specification:

 • eMRTD chips implementing BAC only;

 • eMRTD chips implementing PACE and BAC;

 • eMRTD chips implementing PACE only.

The security provided by Basic Access Control is limited by the design of the protocol, as explained in Appendix A. It is
anticipated that increased computer power over the years will enable attacks against BAC that can be successfully
performed with reasonable financial means and within reasonable time. Therefore, a gradual change over from BAC to
PACE is agreed.

The following transition period has been defined:

 • From 1 January 2027, eMTRD chips MUST implement PACE and eMTRD chips. Implementing BAC
only is deprecated. All eMRTDs implementing BAC only issued before 1 January 2027 remain compliant throughout their
period of validity.

 • From 1 January 2028, BAC is deprecated and eMRTD chips MUST implement PACE only. All eMRTDs
implementing PACE and BAC issued before 1 January 2028 remain compliant throughout their period of validity.

14/6/24
No. 1

6 Machine Readable Travel Documents

Compliant inspection systems MUST support all compliant eMRTD configurations. If an eMRTD supports both PACE and
BAC, the inspection system SHALL use either BAC or PACE but not both in the same session.

 Note 1.— Previous versions of Doc 9303 allowed eMRTD chips implementing no Chip Access Control (“plain
eMRTDs”). This is deprecated in the Eighth Edition. Nevertheless, compliant inspection systems MUST support eMRTDs
without Chip Access Control.

 Note 2.— For access to LDS2 applications, the IC MUST require the execution of PACE.

4.2 Chip Access Procedure

The chip access procedure to authenticate the inspection system consists of the following steps.

 1. Read EF.CardAccess (REQUIRED)

 If PACE is supported by the eMRTD, the eMRTD chip MUST provide the parameters to be used for PACE

in the file EF.CardAccess.

 If EF.CardAccess is available, the inspection system SHALL read the file EF.CardAccess

(cf. Section 9.2.11) to determine the parameters (i.e. symmetric ciphers, key agreement algorithms, domain
parameters, and mappings) supported by the eMRTD chip. The inspection system may select any of those
parameters.

 If the file EF.CardAccess is not available or does not contain parameters for PACE, the inspection system

SHOULD try to read the eMRTD with Basic Access Control (skip to Step 4).

 2. Read EF.DIR (OPTIONAL)

 The Inspection System MAY read EF.DIR (if present) to retrieve a list of applications present on the eMRTD

chip.

 3. PACE (CONDITIONAL)

 This step is RECOMMENDED if PACE is supported by the eMRTD chip. This step is REQUIRED if access

to LDS2 applications is intended.

 • The inspection system SHOULD derive the key Kπ from the MRZ. It MAY use the CAN instead of the

MRZ if the CAN is known to the inspection system.

 • The eMRTD chip SHALL accept the MRZ as passwords for PACE. It MAY additionally accept the CAN

instead of the MRZ.

 • The inspection system and the eMRTD chip mutually authenticate using Kπ and derive session keys

KSEnc and KSMAC. The PACE protocol as described in Section 4.4 SHALL be used.

 If successful, the eMRTD chip performs the following:

 • It SHALL start Secure Messaging.

 • It SHALL grant access to less sensitive data (e.g. EF.DG1, EF.DG2, EF.DG14, EF.DG15, etc. of the

eMRTD Application, and the Document Security Object. For the definition of “sensitive data” see
Doc 9303-1).

14/6/24
No. 1

Part 11. Security Mechanisms for MRTDs 7

 • It SHALL restrict access rights to require Secure Messaging.

 The inspection system MUST verify the authenticity of the contents of EF.CardAccess using EF.DG14 or

EF.CardSecurity, and of EF.DIR (if present and read) using EF.CardSecurity.

 Note.— If no LDS2 application is present on the eMRTD chip, EF.CardSecurity may not contain a

secured copy of EF.DIR.

 4. Basic Access Control (CONDITIONAL)

 This step is REQUIRED if Chip Access Control is enforced by the eMRTD chip and PACE has not been

used. If PACE was successfully performed or if the eMRTD does not enforce Chip Access Control, this step
is skipped.

 The eMRTD Application MUST be selected before Basic Access Control is performed.

 • The inspection system SHOULD derive the Document Basic Access Keys (KEnc and KMAC) from the

MRZ.

 • The inspection system and the eMRTD chip mutually authenticate using the Document Basic Access

Keys and derive session keys KSEnc and KSMAC.

 If successful, the eMRTD chip performs the following:

 • It SHALL start Secure Messaging.

 • It SHALL grant access to less sensitive data (e.g. EF.DG1, EF.DG2, EF.DG14, EF.DG15, etc. of the

eMRTD Application, and the Document Security Object).

 • It SHALL restrict access rights to require Secure Messaging.

 Note.— As a result of the Chip Access Procedure, the Current DF can be either the Master File

(if PACE was used) or the eMRTD Application (if BAC was used).

4.3 Basic Access Control

4.3.1 Protocol Specification

Authentication and Key Establishment is provided by a three-pass challenge-response protocol according to
[ISO/IEC 11770-2] Key Establishment Mechanism 6 using 3DES [FIPS 46-3] as block cipher. A cryptographic checksum
according to [ISO/IEC 9797-1] MAC Algorithm 3 is calculated over and appended to the ciphertexts. The modes of
operation described in Section 4.3.3 MUST be used. Exchanged nonces MUST be of size 8 bytes, exchanged keying
material MUST be of size 16 bytes. The IFD (i.e. the inspection system) and the contactless IC MUST NOT use
distinguishing identifiers as nonces.

In more detail, IFD and IC SHALL perform the following steps:

 1) The IFD requests a challenge RND.IC by sending the GET CHALLENGE command. The IC generates

and responds with a nonce RND.IC.

14/6/24
No. 1

8 Machine Readable Travel Documents

 2) The IFD performs the following operations:

 a) generate a nonce RND.IFD and keying material K.IFD.

 b) generate the concatenation S = RND.IFD || RND.IC || K.IFD.

 c) compute the cryptogram EIFD = E(KEnc, S).

 d) compute the checksum MIFD = MAC(KMAC, EIFD).

 e) send the EXTERNAL AUTHENTICATE command with mutual authenticate function using the data

EIFD || MIFD.

 3) The IC performs the following operations:

 a) check the checksum MIFD of the cryptogram EIFD.

 b) decrypt the cryptogram EIFD.

 c) extract RND.IC from S and check if IFD returned the correct value.

 d) generate keying material K.IC.

 e) generate the concatenation R = RND.IC || RND.IFD || K.IC.

 f) compute the cryptogram EIC = E(KEnc, R).

 g) compute the checksum MIC = MAC(KMAC, EIC).

 h) send the response using the data EIC || MIC.

 4) The IFD performs the following operations:

 a) check the checksum MIC of the cryptogram EIC.

 b) decrypt the cryptogram EIC.

 c) extract RND.IFD from R and check if IC returned the correct value.

 5) The IFD and the IC derive session keys KSEnc and KSMAC using the key derivation mechanism described

in Sections 9.7.1. and 9.7.4 with (K.IC xor K.IFD) as shared secret.

4.3.2 Inspection Process

When an eMRTD with Basic Access Control is offered to the inspection system, optically or visually read information is
used to derive the Document Basic Access Keys (KEnc and KMAC) to gain access to the contactless IC and to set up a
secure channel for communications between the eMRTD’s contactless IC and the inspection system.

An eMRTD’s contactless IC that supports Basic Access Control MUST respond to unauthenticated read attempts,
i.e. read attempts sent without Secure Messaging (including selection of (protected) files in the LDS), with “Security status
not satisfied” (0x6982) once the Secure Channel is established. If the IC receives a plain SELECT, i.e. without Secure

14/6/24
No. 1

Part 11. Security Mechanisms for MRTDs 9

Messaging applied, in the Secure Channel, the IC SHALL abort the Secure Channel. When a plain SELECT is sent before
the Secure Channel is established, or when the Secure Channel has been aborted, both 0x6982 and 0x9000 MAY be
returned by the IC, i.e., are ICAO-compliant responses.

To authenticate the inspection system the following steps MUST be performed:

 1) The inspection system reads the “MRZ_information”. The “MRZ_information” consists of the

concatenation of Document Number, Date of Birth and Date of Expiry, including their respective check
digits, as described in Doc 9303-4, Doc 9303-5 or Doc 9303-6 for document form factors TD3, TD1 and
TD2, respectively, from the MRZ using an OCR-B reader. Alternatively, the required information can be
typed in; in this case it SHALL be typed in as it appears in the MRZ. The most significant 16 bytes of
the SHA-1 hash of this “MRZ_information” are used as key seed to derive the Document Basic Access
Keys using the key derivation mechanism described in Section 9.7.2.

 2) The inspection system and the eMRTD’s contactless IC mutually authenticate and derive session keys.

The authentication and key establishment protocol described above MUST be used.

 3) After a successful execution of the authentication protocol both the IFD and the IC compute session

keys KSEnc and KSMAC using the key derivation mechanism described in Sections 9.7.1 and 9.7.4 with
(K.IC xor K.IFD) as shared secret. All subsequent communication MUST be protected by Secure
Messaging as described in Section 9.8.

4.3.3 Cryptographic Specifications

4.3.3.1 Encryption of Challenge and Response

Two key 3DES in CBC mode with zero IV (i.e. 0x00 00 00 00 00 00 00 00) according to [ISO/IEC 11568-2] SHALL be
used for computation of EIFD and EIC. Padding for the input data MUST NOT be used when performing the EXTERNAL
AUTHENTICATE command.

4.3.3.2 Authentication of Challenge and Response

The cryptographic checksums MIFD and MIC SHALL be calculated using [ISO/IEC 9797-1] MAC algorithm 3 with block
cipher DES, zero IV (8 bytes), and [ISO/IEC 9797-1] padding method 2. The MAC length MUST be 8 bytes.

4.3.4 Application Protocol Data Units

Basic Access Control is performed using the commands GET CHALLENGE and EXTERNAL AUTHENTICATE with mutual
authenticate function. The commands SHALL be encoded as specified in [ISO/IEC 7816-4].

14/6/24
No. 1

10 Machine Readable Travel Documents

4.3.4.1 GET CHALLENGE

Command

CLA Context specific

INS 0x84 GET CHALLENGE

P1/P2 0x0000 —

Data Absent

Response

Data Random Nonce

Status
Bytes

0x9000 Normal processing
Random Nonce successfully generated and transmitted.

Other Operating system dependent error
Random Nonce could not be transmitted.

4.3.4.2 EXTERNAL AUTHENTICATE

Command

CLA Context specific

INS 0x82 EXTERNAL AUTHENTICATE

P1/P2 0x0000 —

Data Command data EIFD || MIFD REQUIRED

Response

Data Response data EIC || MIC REQUIRED

Status
Bytes

0x9000 Normal processing
The protocol has been performed successfully.

Other Operating system dependent error
The protocol failed.

4.4 Password Authenticated Connection Establishment

PACE is a password authenticated Diffie-Hellman key agreement protocol that provides secure communication and
password-based authentication of the eMRTD chip and the inspection system (i.e. eMRTD chip and inspection system
share the same password π).

Part 11. Security Mechanisms for MRTDs 11

PACE establishes Secure Messaging between an eMRTD chip and an inspection system based on weak (short)
passwords. The security context is established in the Master File. The protocol enables the eMRTD chip to verify that the
inspection system is authorized to access stored data and has the following features:

 • Strong session keys are provided independent of the strength of the password.

 • The entropy of the password(s) used to authenticate the inspection system can be very low (e.g. 6 digits

are sufficient in general).

PACE uses keys Kπ derived from passwords with a key derivation function KDFπ (cf. Section 9.7.3). For globally
interoperable machine readable travel documents the following two passwords and corresponding keys are available:

 • MRZ: The key Kπ defined by Kπ = KDFπ(MRZ) is REQUIRED. It is derived from the Machine Readable

Zone (MRZ) similar to Basic Access Control, i.e. the key is derived from the Document Number, the
Date of Birth and the Date of Expiry.

 • CAN: The key Kπ defined by Kπ = KDFπ(CAN) is OPTIONAL. It is derived from the Card Access Number

(CAN). The CAN is a number printed on the document and MUST be chosen randomly or pseudo-
randomly (e.g. using a cryptographically strong pseudo-random function). Doc 9303, Parts 4, 5 and 6
specify the CAN field.

 Note.— In contrast to the MRZ (Document Number, Date of Birth, Data of Expiry) the CAN has the advantage
that it can easily be typed in manually.

PACE supports different Mappings as part of the protocol execution:

 • Generic Mapping based on a Diffie-Hellman Key Agreement;

 • Integrated Mapping based on a direct mapping of a field element to the cryptographic group;

 • Chip Authentication Mapping extends the Generic Mapping and integrates Chip Authentication into the

PACE protocol.

If the chip supports Chip Authentication Mapping, at least one of Generic Mapping or Integrated Mapping and Chip
Authentication MUST also be supported by the chip. This implies that for inspection systems supporting PACE, only
support for Generic Mapping and Integrated Mapping is REQUIRED. Support for Chip Authentication Mapping is
OPTIONAL.

4.4.1 Protocol Specification

The inspection system reads the parameters for PACE supported by the eMRTD chip from the file EF.CardAccess
(cf. Section 9.2.11) and selects the parameters to be used, followed by the protocol execution.

The following commands SHALL be used:

 • READ BINARY as specified in Doc 9303-10;

 • MSE:Set AT (MANAGE SECURITY ENVIRONMENT command with Set Authentication Template function)

as specified in Section 4.4.4.1;

12 Machine Readable Travel Documents

 • The following steps SHALL be performed by the inspection system and the eMRTD chip using a chain of
GENERAL AUTHENTICATE commands as specified in Section 4.4.4.2:

 1) The eMRTD chip randomly and uniformly chooses a nonce s, encrypts the nonce to z = E(Kπ,s), where

Kπ = KDFπ (π) is derived from the shared password π, and sends the ciphertext z to the inspection
system.

 2) The inspection system recovers the plaintext s = D(Kπ,z) with the help of the shared password π.

 3) Both the eMRTD chip and the inspection system perform the following steps:

 a) They exchange additional data required for the mapping of the nonce:

 i) for the generic mapping, the eMRTD chip and the inspection system exchange ephemeral key

public keys.

 ii) for the integrated mapping, the inspection system sends an additional nonce to the eMRTD

chip.

 b) They compute the ephemeral domain parameters D = Map(DIC,s,…) as described in Section

4.4.3.3.

 c) They perform an anonymous Diffie-Hellman key agreement (cf. Section 9.6) based on the

ephemeral domain parameters and generate the shared secret K = KA(SKDH,IC, PKDH,IFD,D) =
KA(SKDH,IFD, PKDH,IC,D).

 d) During Diffie-Hellman key agreement, the IC and the inspection system SHOULD check that the

two public keys PKDH,IC and PKDH,IFD differ.

 e) They derive session keys KSMAC = KDFMAC(K) and KSEnc = KDFEnc(K) as described in Section 9.7.1.

 f) They exchange and verify the authentication token TIFD = MAC(KSMAC,PKDH,IC) and

TIC = MAC(KSMAC,PKDH,IFD) as described in Section 4.4.3.4.

 4) Conditionally, the eMRTD chip computes Chip Authentication Data CAIC, encrypts them AIC = E(KSEnc,

CAIC) and sends them to the terminal (cf. Section 4.4.3.5.1). The terminal decrypts AIC and verifies the
authenticity of the chip using the recovered Chip Authentication Data CAIC (cf. Section 4.4.3.5.2).

Part 11. Security Mechanisms for MRTDs 13

A simplified version of the protocol is also shown in Figure 1.

Chip denoted as IC Inspection system denoted as IFD

Static domain parameters DIC
Choose random nonce s
Compute z = E(Kπ,s)

 — z →
 Compute s = D(Kπ,z)
 ← additional data for Map →
D = Map(DIC,s,…) D = Map(DIC,s,…)
Choose random ephemeral key pair
(SKDH,IC, PKDH,IC,D)

 Choose random ephemeral key pair
(SKDH,IFD,PKDH,IFD,D)

 ← PKDH,IC, PKDH,IFD →
Check PKDH,IC ≠ PKDH,IFD Check PKDH,IC ≠ PKDH,IFD
K = KA(SKDH,IC, PKDH,IFD,D) K = KA(SKDH,IFD,PKDH,IC,D)
Compute TIC =
MAC(KSMAC,PKDH,IFD)

 Compute TIFD =
MAC(KSMAC,PKDH,IC)

[compute CAIC and encrypt as
AIC = E(KSEnc, CAIC).]

 ← TIC, TIFD →
[— AIC →]

Verify TIFD Verify TIC

[decrypt AIC and authenticate chip]

Figure 1. Password Authenticated Connection Establishment

4.4.2 Security Status

An eMRTD chip that supports PACE SHALL respond to unauthenticated read attempts (including selection of (protected)
files in the LDS) with “Security status not satisfied” (0x6982).

 Note.— This specification is more restrictive than the corresponding specification for BAC-only eMRTDs.

If PACE was successfully performed then the eMRTD chip has verified the used password. Secure Messaging is started
using the derived session keys KSMAC and KSEnc.

4.4.3 Cryptographic Specifications

This section contains the cryptographic details of the specification.

Particular algorithms are selected by the issuing State or organization. The inspection system MUST support all
combinations described in the following subsections, with the exception of Chip Authentication Mapping, which is
OPTIONAL. The eMRTD chip MAY support more than one combination of algorithms.

 Note.— Some algorithms are not available for the Chip Authentication Mapping: For security reasons, the
use of 3DES is no longer recommended. DH-variants are not available to reduce the number of variants to be implemented
by Terminals.

14 Machine Readable Travel Documents

4.4.3.1 DH

For PACE with DH the respective algorithms and formats from Section 9.6 and Table 2 MUST be used.

Table 2. Algorithms and Formats for DH

OID Mapping Sym.
Cipher

Key-
length

Secure
Messaging

Auth.
Token

id-PACE-DH-GM-3DES-CBC-CBC Generic 3DES 112 CBC / CBC CBC

id-PACE-DH-GM-AES-CBC-CMAC-128 Generic AES 128 CBC / CMAC CMAC

id-PACE-DH-GM-AES-CBC-CMAC-192 Generic AES 192 CBC / CMAC CMAC

id-PACE-DH-GM-AES-CBC-CMAC-256 Generic AES 256 CBC / CMAC CMAC

id-PACE-DH-IM-3DES-CBC-CBC Integrated 3DES 112 CBC / CBC CBC

id-PACE-DH-IM-AES-CBC-CMAC-128 Integrated AES 128 CBC / CMAC CMAC

id-PACE-DH-IM-AES-CBC-CMAC-192 Integrated AES 192 CBC / CMAC CMAC

id-PACE-DH-IM-AES-CBC-CMAC-256 Integrated AES 256 CBC / CMAC CMAC

4.4.3.2 ECDH

For PACE with ECDH the respective algorithms and formats from Section 9.6 and Table 3 MUST be used.

Only prime curves with uncompressed points SHALL be used. The standardized domain parameters described in Section
9.5.1 SHOULD be used.

Part 11. Security Mechanisms for MRTDs 15

Table 3. Algorithms and Formats for ECDH

OID Mapping Sym.
Cipher

Key-
length

Secure
Messaging

Auth.
Token

id-PACE-ECDH-GM-3DES-CBC-CBC Generic 3DES 112 CBC / CBC CBC

id-PACE-ECDH-GM-AES-CBC-CMAC-128 Generic AES 128 CBC / CMAC CMAC

id-PACE-ECDH-GM-AES-CBC-CMAC-192 Generic AES 192 CBC / CMAC CMAC

id-PACE-ECDH-GM-AES-CBC-CMAC-256 Generic AES 256 CBC / CMAC CMAC

id-PACE-ECDH-IM-3DES-CBC-CBC Integrated 3DES 112 CBC / CBC CBC

id-PACE-ECDH-IM-AES-CBC-CMAC-128 Integrated AES 128 CBC / CMAC CMAC

id-PACE-ECDH-IM-AES-CBC-CMAC-192 Integrated AES 192 CBC / CMAC CMAC

id-PACE-ECDH-IM-AES-CBC-CMAC-256 Integrated AES 256 CBC / CMAC CMAC

id-PACE-ECDH-CAM-AES-CBC-CMAC-128 Chip
Authenti-

cation

AES 128 CBC / CMAC CMAC

id-PACE-ECDH-CAM-AES-CBC-CMAC-192 AES 192 CBC / CMAC CMAC

id-PACE-ECDH-CAM-AES-CBC-CMAC-256 AES 256 CBC / CMAC CMAC

4.4.3.3 Encrypting and Mapping Nonces

The eMRTD chip SHALL randomly and uniformly select the nonce s as a binary bit string of length l, where l is a multiple
of the block size in bits of the respective block cipher E() chosen by the eMRTD chip.

 • The nonce s SHALL be encrypted in CBC mode according to [ISO/IEC 10116] using the key Kπ =

KDFπ(π) derived from the password π and IV set to the all-0 string.

 • The nonce s SHALL be converted to a random generator using an algorithm-specific mapping function

Map.

 • For the Integrated Mapping the additional nonce t SHALL be selected randomly and uniformly as a

binary bit string of length k and sent in clear. In this case k is the key size in bits of the respective block
cipher E() and l SHALL be the smallest multiple of the block size of E() such that l ≥ k.

To map the nonce s or the nonces s, t into the cryptographic group one of the following mappings SHALL be used:

 • Generic Mapping (Section 4.4.3.3.1);

 • Integrated Mapping (Section 4.4.3.3.2);

 • Chip Authentication Mapping (Section 4.4.3.3.3).

16 Machine Readable Travel Documents

4.4.3.3.1 Generic Mapping

ECDH

The function Map:G → Ĝ is defined as Ĝ = s×G+H, where H in <G> is chosen such that logGH is unknown. The point H
SHALL be calculated by an anonymous Diffie-Hellman Key Agreement [TR-03111] as H = KA(SKMap,IC, PKMap,IFD, DIC) =
KA(SKMap,IFD, PKMap, IC, DIC).

 Note.— The key agreement algorithm ECKA prevents small subgroup attacks by using compatible cofactor
multiplication.

DH

The function Map:g → ĝ is defined as ĝ =gs×h, where h in <g> is chosen such that loggh is unknown. The group element
h SHALL be calculated by an anonymous Diffie-Hellman Key Agreement as h = KA(SKMap,IC, PKMap,IFD, DIC) = KA(SKMap,IFD,
PKMap,IC, DIC).

 Note.— The public key validation method described in [RFC 2631] MUST be used to prevent small subgroup
attacks.

4.4.3.3.2 Integrated Mapping

ECDH

The function Map:G → Ĝ is defined as Ĝ = fG(Rp(s,t)), where Rp() is a pseudo-random function that maps octet strings to
elements of GF(p) and fG() is a function that maps elements of GF(p) to <G>. The random nonce t SHALL be chosen
randomly by the inspection system and sent to the eMRTD chip. The pseudo-random function Rp()is described below. The
function fG() is defined in [BCIMRT2010]. An informative description is given in Appendix B.

DH

The function Map:g → ĝ is defined as ĝ = fg(Rp(s,t)), where Rp() is a pseudo-random function that maps octet strings to
elements of GF(p) and fg() is a function that maps elements of GF(p) to <g>. The random nonce t SHALL be chosen
randomly by the inspection system and sent to the eMRTD chip. The pseudo-random function Rp() is described below.
The function fg() is defined as fg(x)=xa mod p, and a = (p-1)/q is the cofactor. Implementations MUST check that ĝ ≠ 1.

Pseudo-random Number Mapping

The function Rp(s,t) is a function that maps octet strings s (of bit length l) and t (of bit length k) to an element int(x1||x2||...||xn)
mod p of GF(p). The function Rp(s,t) is specified below in Figure 2.

The construction is based on the respective block cipher E() in CBC mode according to [ISO/IEC 10116] with IV=0, where
k is the key size (in bits) of E(). Where required, the output ki MUST be truncated to key size k. The value n SHALL be
selected as smallest number, such that n*l ≥ log2 p + 64.

 Note.— The truncation is only necessary for AES-192: Use octets 1 to 24 of ki; additional octets are not used.
In case of DES, k is considered to be equal to 128 bits, and the output of R(s,t) shall be 128 bits.

Part 11. Security Mechanisms for MRTDs 17

Figure 2. Pseudo-random number mapping

The constants c0 and c1 are defined as follows:

 • For 3DES and AES-128 (l=128):

 - c0=0xa668892a7c41e3ca739f40b057d85904

 - c1=0xa4e136ac725f738b01c1f60217c188ad

 • For AES-192 and AES-256 (l=256):

 - c0=

0xd463d65234124ef7897054986dca0a174e28df758cbaa03f240616414d5a1676

 - c1=

0x54bd7255f0aaf831bec3423fcf39d69b6cbf066677d0faae5aadd99df8e53517

4.4.3.3.3 Chip Authentication Mapping

The mapping phase of the PACE-CAM is identical to the mapping phase of PACE-GM (cf. Section 4.4.3.3.1).

4.4.3.4 Authentication Token

The authentication token SHALL be computed over a public key data object (cf. Section 9.4) containing the object identifier
as indicated in MSE:Set AT (cf. Section 4.4.4.1), and the received ephemeral public key (i.e. excluding the domain
parameters, cf. Section 9.4.5) using an authentication code and the key KSMAC derived from the key agreement.

 Note.— Padding is performed internally by the message authentication code, i.e. no application specific
padding is performed.

CBCCBC

CB
C

CB
C

CB
C

CB
C

CB
C

CB
C

s k0 k1 k2

x1 x2CB
C

CB
C

c0c0

c1c1

.....

.....

IN TI FIRST ITERATION SECOND ITERATION

18 Machine Readable Travel Documents

3DES

3DES [FIPS 46-3] SHALL be used in Retail-mode according to [ISO/IEC 9797-1] MAC algorithm 3 / padding method 2
with block cipher DES and IV=0.

AES

AES [FIPS 197] SHALL be used in CMAC-mode [SP 800-38B] with a MAC length of 8 bytes.

4.4.3.5 Encrypted Chip Authentication Data

The eMRTD chip MUST provide static key pair(s) SKIC, PKIC as described in Section 6.2. Encrypted Chip Authentication
Data is REQUIRED for PACE with Chip Authentication Mapping.

4.4.3.5.1 Generation by the eMRTD chip

The Chip Authentication Data SHALL be computed as CAIC = (SKIC)-1 * SKMap,IC mod p, where SKIC is the static private
key of the chip, SKMap, IC is the ephemeral private key used by the chip to computer H in the mapping phase of PACE
(cf. Section 4.4.3.3.1) and p is the order of the used cryptographic group. The Chip Authentication Data SHALL be
encrypted using the key KSEnc derived from the key agreement as AIC = E(KSEnc, CAIC) to yield the Encrypted Chip
Authentication Data.

 Note.— (SKIC)-1 can be precomputed during personalization of the eMRTD chip and securely stored in the
chip, avoiding the modular inversion during run-time.

4.4.3.5.2 Verification by the terminal

The terminal SHALL decrypt AIC to recover CAIC and verify PKMap,IC = KA(CAIC, PKIC, DIC), where PKIC is the static public
key of the eMRTD chip.

 Note.— Passive Authentication MUST be performed in combination with the Chip Authentication Mapping.
Only after a successful validation of the respective Security Object may the eMRTD chip be considered genuine.

4.4.3.5.3 Padding

The data to be encrypted SHALL be padded according to [ISO/IEC 9797-1] “Padding Method 2”.

4.4.3.5.4 AES

AES [19] SHALL be used in CBC-mode according to [ISO/IEC 10116] with IV=E(KSEnc,-1), where -1 is the bit string of
length 128 with all bits set to 1.

Part 11. Security Mechanisms for MRTDs 19

4.4.4 Application Protocol Data Units

The following sequence of commands SHALL be used to implement PACE:

 1. MSE:Set AT
 2. GENERAL AUTHENTICATE

4.4.4.1 MSE:Set AT

The command MSE:Set AT is used to select and initialize the PACE protocol. The use of MSE:Set AT for PACE is indicated
by a PACE Object Identifier (see Sections 4.4.3 and 9.2.3) contained as cryptographic mechanism reference with tag 0x80,
see table below.

Command

CLA Context specific

INS 0x22 Manage Security Environment

P1/P2 0xC1A4 Set Authentication Template for mutual authentication

Data 0x80 Cryptographic mechanism reference
Object Identifier of the protocol to select (value only, Tag 0x06 is
omitted).

REQUIRED

0x83 Reference of a public key / secret key
The password to be used is indicated by the following values in this data
object:
0x01: MRZ_information
0x02: CAN

REQUIRED

0x84 Reference of a private key / Reference for computing a session key
This data object is REQUIRED to indicate the identifier of the domain
parameters to be used if the domain parameters are ambiguous, i.e.
more than one set of domain parameters is available for PACE.

CONDITIONAL

0x7F4C Certificate Holder Authorization Template
This data object (defined in Doc 9303-12) MUST be present if the terminal
requests Certification Authority Reference(s) for use in Terminal
Authentication to be returned as part of PACE (cf. Section 4.4.5).
The Object Identifier contained in this data object SHALL be set to id-IS
(cf. Doc 9303-10). The access bits in the discretionary data template
SHALL all be set to 1 by the terminal.

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal processing
The protocol has been selected and initialized.

20 Machine Readable Travel Documents

Command

CLA Context specific

0x6A80 Incorrect parameters in the command data field
Algorithm not supported or initialization failed.

0x6A88 Referenced data not found
The referenced data (i.e. password or domain parameter) is not available.

other Operating system dependent error
The initialization of the protocol failed.

 Note 1.— Some operating systems accept the selection of an unavailable key and return an error only when
the key is used for the selected purpose.

 Note 2.— For the MSE:Set command, the IC SHOULD ignore data objects with tags not specified for this
command. The terminal SHOULD NOT include data objects with tags not known to be understood by the IC.

4.4.4.2 GENERAL AUTHENTICATE

A chain of GENERAL AUTHENTICATE commands is used to perform the PACE protocol.

Command

CLA Context specific.

INS 0x86 GENERAL AUTHENTICATE

P1/P2 0x0000 Keys and protocol implicitly known

Data 0x7C Dynamic Authentication Data
Protocol specific data objects

REQUIRED

Response

Data 0x7C Dynamic Authentication Data
Protocol specific data objects as described in Section 4.4.5.

REQUIRED

Status
Bytes

0x9000 Normal processing
The protocol (step) was successful.

0x6300 Authentication failed
The protocol (step) failed.

0x6A80 Incorrect parameters in command data field
Provided data is invalid.

other Operating system dependent error
The protocol (step) failed.

Part 11. Security Mechanisms for MRTDs 21

4.4.4.3 Command Chaining

Command chaining MUST be used for the GENERAL AUTHENTICATE command to link the sequence of commands to
the execution of the protocol. Command chaining MUST NOT be used for other purposes unless clearly indicated by the
chip. For details on command chaining see [ISO/IEC 7816-4].

4.4.5 Exchanged Data

The protocol specific data objects SHALL be exchanged in a chain of GENERAL AUTHENTICATE commands, with
protocol specific command and response data encapsulated in a Dynamic Authentication data object (see Section 4.4.4.2)
with context specific tags as shown in Table 4:

Table 4. Exchanged data for PACE

Step Description Protocol Command Data Protocol Response Data

1. Encrypted Nonce - Absent1 0x80 Encrypted Nonce

2. Map Nonce 0x81 Mapping Data 0x82 Mapping Data

3. Perform Key Agreement 0x83 Ephemeral Public Key 0x84 Ephemeral Public Key

4. Mutual Authentication 0x85 Authentication Token 0x86 Authentication Token

0x87 Certification Authority Reference
(CONDITIONAL)

0x88 Certification Authority Reference
(CONDITIONAL)

0x8A Encrypted Chip Authentication Data
(CONDITIONAL)

Certification Authority Reference(s) MUST be present if a data object 0x7F4C was transmitted to the IC during the setup
of PACE (cf. Section 4.4.4.1) and Terminal Authentication is supported by the IC. In this case the data object 0x87 SHALL
contain the most recent Certification Authority Reference. The data object 0x88 MAY contain the previous Certification
Authority Reference.

Encrypted Chip Authentication Data (cf. Section 4.4.3.5) MUST be present if Chip Authentication Mapping is used and
MUST NOT be present otherwise.

4.4.5.1 Encrypted Nonce

The encrypted nonce (cf. Section 4.4.3.3) SHALL be encoded as octet string.

1. This implies an empty Dynamic Authentication Data Object

22 Machine Readable Travel Documents

4.4.5.2 Mapping Data

The exchanged data is specific to the used mapping:

4.4.5.2.1 Generic Mapping

The ephemeral public keys (cf. Section 4.4.3.3 and Section 9.4.5) SHALL be encoded as elliptic curve point (ECDH) or
unsigned integer (DH).

4.4.5.2.2 Integrated Mapping

The nonce t SHALL be encoded as octet string.

 Note.— The context specific data object 0x82 SHALL be empty for the Integrated Mapping.

4.4.5.2.3 Chip Authentication Mapping

The encoding of the mapping data is identical to the Generic Mapping (cf. Section 4.4.5.2.1).

4.4.5.3 Public Keys

The public keys SHALL be encoded as described in Section 9.4.5.

4.4.5.4 Authentication Token

The authentication token (cf. Section 4.4.3.4) SHALL be encoded as octet string.

4.4.5.5 Certification Authority Reference

The Certification Authority Reference (CAR) data objects SHALL be encoded as specified in Doc 9303-12.

4.4.5.6 Encrypted Chip Authentication Data

The Chip Authentication Data SHALL be encoded as octet string using the function FE2OS() specified in [TR-03111]
before encryption. Note that FE2OS() requires the encoding with the same number of octets as the prime order of the
group, i.e. possibly including leading 0x00's. The Encrypted Chip Authentication Data SHALL be encoded as octet string.

Part 11. Security Mechanisms for MRTDs 23

5. AUTHENTICATION OF DATA

In addition to the LDS Data Groups, the contactless IC also contains a Document Security Object (SOD). This object is
digitally signed by the issuing State or organization and contains hash representations of the LDS contents
(see Doc 9303-10).

An inspection system, containing the Document Signer Public Key of each State, or having read the Document Signer
Certificate (CDS) from the eMRTD, will be able to verify the Document Security Object (SOD). In this way, through the
contents of the Document Security Object (SOD), the contents of the LDS are authenticated.

This verification mechanism does not require processing capabilities of the contactless IC in the eMRTD. Therefore it is
called “Passive Authentication” of the contactless IC’s contents.

Passive Authentication proves that the contents of the Document Security Object (SOD) and LDS are authentic and not
changed. It does not prevent exact copying of the contactless IC’s content or chip substitution.

Therefore Passive Authentication SHOULD be supported by an additional physical inspection of the eMRTD.

5.1 Passive Authentication

5.1.1 Inspection Process

The inspection system performs the following steps:

 1. The inspection system SHALL read the Document Security Object (SOD) (which MUST contain the

Document Signer Certificate (CDS), see also Doc 9303-10) from the contactless IC.

 2. The inspection system SHALL build and validate a certification path from a Trust Anchor to the Document

Signer Certificate used to sign the Document Security Object (SOD) according to Doc 9303-12.

 3. The inspection system SHALL use the verified Document Signer Public Key to verify the signature of the

Document Security Object (SOD).

 4. The inspection system MAY read relevant Data Groups from the contactless IC.

 5. The inspection system SHALL ensure that the contents of the Data Group are authentic and unchanged by

hashing the contents and comparing the result with the corresponding hash value in the Document Security
Object (SOD).

The following additional checks are considered Best Practice:

 1. The inspection system or the inspection officer SHOULD check the presence of a DocumentTypeExtension

in the Document Signer Certificate.

 • If yes, the inspection system SHOULD check the consistency of the DocumentTypeExtension, the

Document Type from Data Group 1 and the Document Type from the visual MRZ (see Docs 9303-12,
9303-10 and 9303-3, respectively).

24 Machine Readable Travel Documents

 • If no, the inspection system SHOULD check that the KeyUsage of the Document Signer Certificate is
set to digitalSignature and that the Document Signer Certificate contains no ExtendedKeyUsage-
Extension (see Doc 9303-12).

 2. The inspection system or the inspection officer SHOULD check the consistency of the country codes from:

 • the Subject-field and, if present, the SubjectAltName of the Document Signer Certificate;

 • the Subject-field and, if present, the SubjectAltName of the Trust Anchor (CSCA certificate);

 • the Data Group 1 as read from the contactless IC; and

 • the visual MRZ.

Additionally, the inspection system or the inspection officer MAY compare the contents of Data Group 1 to the
visual MRZ (see Docs 9303-12, 9303-10 and 9303-3, respectively).

 3. The inspection system SHOULD verify that the Issuing Date of the eMRTD is included in the Private Key

Usage Period contained in the Document Signer Certificate (see Doc 9303-12).

The biometric information can now be used to perform the biometrics verification with the person who offers the eMRTD.

5.1.2 Additional Inspection Process for LDS2 Applications

Data written after issuance of the eMRTD are not protected by the Document Security Object, which is signed by the
issuer of the document. To verify the authenticity of data written after issuance, the following steps MUST be performed
by the inspection system for each written data object:

 1. The inspection system SHALL build and validate a certification path from a Trust Anchor to the Signer

Certificate used to sign the data object according to Doc 9303-12. The inspection system MAY use both
certificates known beforehand and certificates retrieved from the chip to build the path (see Doc 9303-10).

 2. The inspection system SHALL use the verified Signer Public Key to verify the signature of the data object.

 Note.— This procedure can be skipped for data objects whose authenticity is not deemed relevant for the
inspection process by the receiving State or organization.

6. AUTHENTICATION OF THE CONTACTLESS IC

An issuing State or organization MAY choose to protect its eMRTDs against chip substitution.

The following mechanisms to verify the authenticity of the chip are available.

 1. Active Authentication, as defined in Section 6.1. Support of Active Authentication is indicated by the presence

of EF.DG15. If available, the terminal MAY read and verify EF.DG15 and perform Active Authentication.

 2. Chip Authentication, as defined in Section 6.2. Support of Chip Authentication is indicated by the presence

Part 11. Security Mechanisms for MRTDs 25

of corresponding SecurityInfos in EF.DG14/EF.CardSecurity. If available, the terminal MAY read and
verify EF.DG14/EF.CardSecurity and perform Chip Authentication.

 3. PACE with Chip Authentication Mapping (PACE-CAM) as defined in Section 4.4. Support is indicated by the

presence of a corresponding PACEInfo structure in EF.CardAccess. If PACE-CAM was performed
successfully in the chip access procedure, the terminal MAY perform the following to authenticate the chip:

 • read and verify EF.CardSecurity

 • use the Public Key from EF.CardSecurity together with the Mapping Data and the Chip Authentication

Data received as part of PACE-CAM to authenticate the chip (Section 4.4.3.5.2).

6.1 Active Authentication

Active Authentication authenticates the contactless IC by signing a challenge sent by the IFD (inspection system) with a
private key known only to the IC.

For this purpose the contactless IC contains its own Active Authentication Key pair (KPrAA and KPuAA). A hash
representation of Data Group 15 (Public Key (KPuAA) info) is stored in the Document Security Object (SOD) and therefore
authenticated by the issuer’s digital signature. The corresponding Private Key (KPrAA) is stored in the contactless IC’s
secure memory.

By authenticating the visual MRZ (through the hashed MRZ in the Document Security Object (SOD)) in combination with
the challenge response, using the eMRTD’s Active Authentication Key Pair (KPrAA and KPuAA), the inspection system
verifies that the Document Security Object (SOD) has been read from the genuine contactless IC, stored in the genuine
eMRTD.

Active Authentication requires processing capabilities of the eMRTD’s contactless IC.

6.1.1 Protocol Specification

Active Authentication is performed using the [ISO/IEC 7816-4] INTERNAL AUTHENTICATE command.

If Active Authentication is performed after Secure Messaging was established, all commands and responses MUST be
transmitted as Secure Messaging APDUs according to Section 9.8.

In more detail, IFD (inspection system) and IC (eMRTD’s contactless IC) perform the following steps:

 1. The IFD generates a nonce RND.IFD and sends it to the IC using the INTERNAL AUTHENTICATE

command.

 2. The IC performs the following operations:

 a) generate the message M;

 b) calculate h(M);

 c) compute the signature σ and send the response to the IFD.

26 Machine Readable Travel Documents

 3. The IFD verifies the response on the sent INTERNAL AUTHENTICATE command and checks if the IC
returned the correct value.

6.1.2 Cryptographic Specifications

6.1.2.1 Nonce

The input is a nonce (RND.IFD) that MUST be 8 bytes.

 Note.— Nonces MUST NOT be reused, e.g. the nonce used for BAC/PACE MUST NOT be reused for Active
Authentication.

6.1.2.2 RSA

The IC SHALL compute a signature, when an integer factorization based mechanism is used, according to [ISO/IEC 9796-
2] Digital Signature scheme 1.

In the following, k denotes the length of key for signature generation and Lh the length of the output of the hash function
H used during signature generation. The trailer field option 1 MUST be used (and t set to 1) if SHA-1 is used during
signature generation, trailer field option 2 MUST be used otherwise (and t set to 2).

The following values for the trailer field SHALL be used for option 2:

Hash function SHA-224 SHA-256 SHA-384 SHA-512

Trailer field 0x38CC 0x34CC 0x36CC 0x35CC

For interoperability reasons, only SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 are supported as hash functions for
Active Authentication with RSA.

The message M to be signed SHALL be the concatenation of M1 and M2, where M1 MUST be a nonce of length c - 4 bits
(RND.IC) generated by the eMRTD, where c (the capacity of the signature) is given by c = k - Lh - (8 x t) - 4, and M2 is
RND.IFD generated by the Inspection System.

The result of the signature computation MUST be a signature σ without the non-recoverable message part M2.

eMRTDs SHOULD implement the signature generation scheme specified in [ISO/IEC 9796-2] paragraph B.6 and SHOULD
NOT make use of the signature generation scheme specified in [ISO/IEC 9796-2] paragraph B.4. eMRTDs SHALL NOT
implement other signature generation schemes.

Inspection systems SHALL implement the signature generation scheme specified in [ISO/IEC 9796-2] paragraph B.6 and
SHOULD implement the signature generation scheme specified in [ISO/IEC 9796-2] paragraph B.4.

Part 11. Security Mechanisms for MRTDs 27

6.1.2.3 ECDSA

For ECDSA, the plain signature format according to [TR-03111] SHALL be used. Only prime curves with uncompressed
points SHALL be used. A hash algorithm, whose output length is of the same length or shorter than the length of the
ECDSA key in use, SHALL be used. Only SHA-224, SHA-256, SHA-384 or SHA-512 are supported as hash functions.
RIPEMD-160 and SHA-1 SHALL NOT be used.

The message M to be signed is the nonce RND.IFD provided by the Inspection System.

6.1.3 Application Protocol Data Units

Active Authentication is performed by a single invocation of the INTERNAL AUTHENTICATE command as specified in
[ISO/IEC 7816-4].

Command

CLA Context specific

INS 0x88 INTERNAL AUTHENTICATE

P1/P2 0x0000 —

Data RND.IFD REQUIRED

Response

Data Signature σ generated by the IC REQUIRED

Status
Bytes

0x9000 Normal processing
The protocol has been performed successfully.

Other Operating system dependent error
The protocol failed.

6.1.4 Active Authentication Keys

The Active Authentication Key Pairs (KPrAA and KPuAA) SHALL be generated in a secure way.

Both the Active Authentication Public Key (KPuAA) and the Active Authentication Private Key (KPrAA) are stored in the
eMRTD’s contactless IC. After that, no Key Management is applicable for these keys.

 Note.— It should be noted that when using key lengths exceeding 1 848 bits (if Secure Messaging with 3DES
is used) / 1 792 bits (if Secure Messaging with AES is used) in Active Authentication with Secure Messaging, Extended
Length APDUs MUST be supported by the eMRTD chip and the Inspection System.

Issuing States or organizations SHALL choose appropriate key lengths offering protection against attacks for the life time
of the eMRTD. Suitable cryptographic catalogues SHOULD be taken into account.

28 Machine Readable Travel Documents

6.1.5 Active Authentication Public Key Info

The Active Authentication Public Key is stored in the LDS Data Group 15. The format of the structure
(SubjectPublicKeyInfo) is specified in [RFC 5280], see Section 9.1. All security objects MUST be produced in
Distinguished Encoding Rule (DER) format to preserve the integrity of the signatures within them.

 ActiveAuthenticationPublicKeyInfo ::= SubjectPublicKeyInfo

6.1.6 Inspection Process

When an eMRTD with Data Group 15 is offered to the inspection system, the Active Authentication mechanism MAY be
performed to ensure that the data are read from the genuine contactless IC and that the contactless IC and physical
document belong to each other.

The inspection system and the contactless IC perform the following steps:

 1. The entire MRZ is read visually from the eMRTD (if not already read as part of the Basic Access Control

procedure) and compared with the MRZ value in Data Group 1. Since the authenticity and integrity of Data
Group 1 have been checked through Passive Authentication, similarity ensures that the visual MRZ is
authentic and unchanged.

 2. Passive Authentication has also proven the authenticity and integrity of Data Group 15. This ensures that

the Active Authentication Public Key (KPuAA) is authentic and unchanged.

 3. To ensure that the Document Security Object (SOD) is not a copy, the inspection system uses the eMRTD’s

Active Authentication Key pair (KPrAA and KPuAA) in a challenge-response protocol with the eMRTD’s
contactless IC as described above.

After a successful challenge-response protocol, it is proven that the Document Security Object (SOD) belongs to the
physical document, the contactless IC is genuine and contactless IC and physical document belong to each other.

6.2 Chip Authentication

The Chip Authentication Protocol is an ephemeral-static Diffie-Hellman key agreement protocol that provides secure
communication and unilateral authentication of the eMRTD chip.

The main differences to Active Authentication are:

 • Challenge Semantics are prevented because the transcripts produced by this protocol are non-

transferable.

 • Besides authentication of the eMRTD chip this protocol also provides strong session keys.

Details on Challenge Semantics are described in Appendix C.

The static Chip Authentication Key Pair(s) MUST be stored on the eMRTD chip.

 • The private key SHALL be stored securely in the eMRTD chip’s memory.

 • The public key SHALL be provided as SubjectPublicKeyInfo in the

ChipAuthenticationPublicKeyInfo structure (see Section 9.2.6).

Part 11. Security Mechanisms for MRTDs 29

The protocol provides implicit authentication of both the eMRTD chip itself and the stored data by performing Secure
Messaging using the new session keys.

If the IC supports Chip Authentication, the IC MAY support Chip Authentication in the Master File and/or MAY support
Chip Authentication in the eMRTD Application. If Chip Authentication is used in conjunction with accessing data groups in
LDS2 Applications, the IC MUST support Chip Authentication in the Master File.

 Note.— If compatibility with European Union Extended Access Control [TR-03110] is required, the IC MUST
support Chip Authentication in the eMRTD Application.

6.2.1 Protocol Specification

The following steps are performed by the terminal and the eMRTD chip.

 1. The eMRTD chip sends its static Diffie-Hellman public key PKIC, and the domain parameters DIC to the

terminal.

 2. The terminal generates an ephemeral Diffie-Hellman key pair (SKDH,IFD, PKDH,IFD, DIC) and sends the

ephemeral public key PKDH,IFD to the eMRTD chip.

 3. Both the eMRTD chip and the terminal compute the following:

 a) The shared secret K = KA(SKIC, PKDH,IFD, DIC) = KA(SKDH,IFD, PKIC, DIC)

 b) The session keys KSMAC = KDFMAC(K) and KSEnc = KDFEnc(K) derived from K for Secure Messaging.

A simplified version is shown in Figure 3:

IC (chip) IFD (Inspection system)
Static key pair (SKIC, PKIC, DIC)
 — PKIC, DIC →
 Choose random ephemeral key pair

(SKDH,IFD, PKDH,IFD, DIC)
 ← PKDH,IFD —
K = KA(SKIC, PKDH,IFD, DIC) K = KA(SKDH,IFD, PKIC, DIC)

Figure 3. Chip Authentication

To verify the authenticity of the PKIC the terminal SHALL perform Passive Authentication.

6.2.2 Security Status

If Chip Authentication was successfully performed, Secure Messaging is restarted using the derived session keys KSMAC
and KSEnc. Otherwise, Secure Messaging is continued using the previously established session keys (PACE or Basic
Access Control).

 Note.— Passive Authentication MUST be performed in combination with Chip Authentication. Only after a
successful validation of the respective Security Object may the eMRTD chip be considered genuine.

30 Machine Readable Travel Documents

6.2.3 Cryptographic Specifications

Particular algorithms are selected by the issuing State or organization. The inspection system MUST support all
combinations described in the following subsections. The eMRTD chip MAY support more than one combination of
algorithms.

6.2.3.1 Chip Authentication with DH

For Chip Authentication with DH the respective algorithms and formats from Section 9.6 and Table 5 MUST be used. For
Public Keys, PKCS#3 [PKCS#3] MUST be used instead of X9.42 [X9.42].

Table 5. Object Identifiers for Chip Authentication with DH

OID Sym. Cipher Key Length Secure Messaging

id-CA-DH-3DES-CBC-CBC 3DES 112 CBC / CBC

id-CA-DH-AES-CBC-CMAC-128 AES 128 CBC / CMAC

id-CA-DH-AES-CBC-CMAC-192 AES 192 CBC / CMAC

id-CA-DH-AES-CBC-CMAC-256 AES 256 CBC / CMAC

6.2.3.2 Chip Authentication with ECDH

For Chip Authentication with ECDH the respective algorithms and formats from Section 9.6 and Table 6 MUST be used.

Table 6. Object Identifiers for Chip Authentication with ECDH

OID Sym. Cipher Key Length Secure Messaging

id-CA-ECDH-3DES-CBC-CBC 3DES 112 CBC / CBC

id-CA-ECDH-AES-CBC-CMAC-128 AES 128 CBC / CMAC

id-CA-ECDH-AES-CBC-CMAC-192 AES 192 CBC / CMAC

id-CA-ECDH-AES-CBC-CMAC-256 AES 256 CBC / CMAC

Part 11. Security Mechanisms for MRTDs 31

6.2.4 Applications Protocol Data Units

Depending on the symmetric algorithm to be used, two implementations of Chip Authentication are available.

 • The following command SHALL be used to implement Chip Authentication with 3DES Secure

Messaging:

 1. MSE:Set KAT

 • The following sequence of commands SHALL be used to implement Chip Authentication with AES

Secure Messaging and MAY be used to implement Chip Authentication with 3DES Secure Messaging:

 1. MSE:Set AT
 2. GENERAL AUTHENTICATE

6.2.4.1 Implementation using MSE:Set KAT

 Note.— MSE:Set KAT may only be used for id-CA-DH-3DES-CBC-CBC and id-CA-ECDH-3DES-
CBC-CBC, i.e. Secure Messaging is restricted to 3DES.

Command

CLA Context specific

INS 0x22 Manage Security Environment

P1/P2 0x41A6 Set Key Agreement Template for computation.

Data 0x91 Ephemeral Public Key
Ephemeral public key PKDH,IFD (cf. Section 9.4.5) encoded as
plain public key value.

REQUIRED

0x84 Reference of a private key
This data object is REQUIRED if the private key is ambiguous,
i.e. more than one key pair is available for Chip Authentication
(cf. Section 6.2 and 9.2.6).

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal processing
The key agreement operation was successfully performed. New session keys have been
derived.

0x6A80 Incorrect Parameters in the command data field
The validation of the ephemeral public key failed.

other Operating system dependent error
The previously established session keys remain valid.

32 Machine Readable Travel Documents

6.2.4.2 Implementation using MSE:Set AT and GENERAL AUTHENTICATE

1. MSE:Set AT: The command MSE:Set AT is used to select and initialize the protocol. The use of MSE:Set AT for Chip
Authentication is indicated by a Chip Authentication Object Identifier (see Sections 6.2.3 and 9.2.7) contained as
cryptographic mechanism reference with tag 0x80, see table below.

Command

CLA Context specific

INS 0x22 Manage Security Environment

P1/P2 0x41A4 Chip Authentication:
Set Authentication Template for internal authentication.

Data 0x80 Cryptographic mechanism reference
Object Identifier of the protocol to select (value only, Tag 0x06 is
omitted).

REQUIRED

0x84 Reference of a private key
This data object is REQUIRED to indicate the identifier of the
private key to be used if the private key is ambiguous, i.e. more
than one private key is available for Chip Authentication.

CONDITIONAL

Response

Data – Absent

Status
Bytes

0x9000 Normal processing
The protocol has been selected and initialized.

0x6A80 Incorrect parameters in the command data field
Algorithm not supported or initialization failed.

0x6A88 Referenced data not found
The referenced data (i.e. private key) is not available.

other Operating system dependent error
The initialization of the protocol failed.

 Note.— Some operating systems accept the selection of an unavailable key and return an error only when
the key is used for the selected purpose.

Part 11. Security Mechanisms for MRTDs 33

2. GENERAL AUTHENTICATE: The command GENERAL AUTHENTICATE is used to perform the Chip Authentication.

Command

CLA Context specific

INS 0x86 GENERAL AUTHENTICATE

P1/P2 0x0000 Keys and protocol implicitly known.

Data 0x7C Dynamic Authentication Data
Protocol specific data objects.

REQUIRED

0x80 Ephemeral Public Key

Response

Data 0x7C Dynamic Authentication Data
Protocol specific data objects

REQUIRED

Status
Bytes

0x9000 Normal processing
The protocol (step) was successful.

0x6300 Authentication failed
The protocol (step) failed.

0x6A80 Incorrect parameters in data field
Provided data is invalid.

0x6A88 Referenced data not found
The referenced data (i.e. private key) is not available.

other Operating system dependent error
The protocol (step) failed.

 Note.— The public keys for Chip Authentication supported by the chip are made available in the Security
Object (see Section 9.2.11). If more than one public key is supported, the terminal MUST select the corresponding private
key of the chip to be used within MSE:Set AT.

6.2.4.3 Ephemeral Public Key

The ephemeral public keys (cf. Section 9.4.5) SHALL be encoded as elliptic curve point (ECDH) or unsigned integer (DH).

34 Machine Readable Travel Documents

7. ADDITIONAL ACCESS CONTROL MECHANISMS

The personal data stored in the contactless IC as defined to be the mandatory minimum for global interoperability are the
MRZ and the digitally stored image of the bearer’s face. Both items can also be seen (read) visually after the eMRTD has
been opened and offered for inspection.

Besides the digitally stored image of the face as the primary biometric for global interoperability, ICAO has endorsed the
use of digitally stored images of fingers and/or irises in addition to the face. For national or bilateral use, States MAY
choose to store templates and/or MAY choose to limit access or encrypt this data, as to be decided by States themselves.

Access to this more sensitive personal data SHOULD be more restricted. This can be accomplished in two ways: extended
access control or data encryption. Section 7.1 specifies Terminal Authentication as an interoperable mechanism for
extended access control. If no interoperability is required, other mechanisms can be used.

7.1 Terminal Authentication

The Terminal Authentication mechanism is CONDITONAL. Implementation is REQUIRED for LDS2 applications. Terminal
Authentication MAY be used to protect secondary biometrics in the eMRTD Application.

The Terminal Authentication Protocol is a two move challenge-response protocol that provides explicit unilateral
authentication of the terminal. The protocol is based on Extended Access Control as specified in [TR-03110]. If this protocol
is supported by the IC, it MUST support Chip Authentication or PACE with Chip Authentication Mapping.

This protocol enables the IC to verify that the terminal is entitled to access sensitive data. As the terminal may access
sensitive data afterwards, all further communication MUST be protected appropriately. Terminal Authentication therefore
also authenticates an ephemeral public key chosen by the terminal that was used to set up Secure Messaging with Chip
Authentication or PACE with Chip Authentication Mapping. The IC MUST bind the terminal’s access rights to Secure
Messaging established by the authenticated ephemeral public key of the terminal.

The IC MAY support Terminal Authentication in the Master File and/or the eMRTD Application. If Terminal Authentication
is used to protect data groups in other applications than the eMRTD Application, the IC MUST support Terminal
Authentication in the Master File.

 Note.— If compatibility with European Union Extended Access Control [TR-03110] is required, the IC MUST
support Terminal Authentication in the eMRTD Application.

7.1.2 Protocol Specification

The following steps are performed by the terminal and the IC:

 1. The terminal sends a certificate chain to the IC. The chain starts with a certificate verifiable with the

CVCA public key stored on the chip and ends with the Terminal Certificate.

 2. The IC verifies the certificates and extracts the terminal’s public key PKIFD.

 3. The IC randomly chooses a challenge rIC and sends it to the terminal.

 4. The terminal responds with the signature sIFD = Sign(SKIFD, IDIC||rIC||Comp(PKDH,IFD)).

Part 11. Security Mechanisms for MRTDs 35

 5. The IC checks that Verify(PKIFD , sIFD, IDIC ||rIC||Comp(PKDH,IFD)) = true.

 Note.— The key PKDH,IFD is generated during Chip Authentication or PACE with Chip Authentication Mapping.
If more than one key is generated (e.g. Chip Authentication is performed after PACE with Chip Authentication Mapping),
the newest key MUST be used.

In this protocol, IDIC is an identifier of the IC:

 • If BAC is used, IDIC is the eMRTD’s Document Number as contained in the MRZ including the check

digit.

 • If PACE is used, IDIC is computed using the IC’s ephemeral PACE public key, i.e. IDIC = Comp(PKDH,IC).

 Note.— A successful execution of the PACE protocol is REQUIRED before Terminal Authentication can be
performed in the MF.

A simplified version is shown below:

IC (chip) IFD (inspection system)

Choose rIC randomly

 — rIC →

 sIFD = Sign(SKIFD,IDIC||rIC||Comp(PKDH,IFD))

 ← sIFD —-

Verify(PKIFD , sIFD, IDIC||rIC||Comp(PKDH,IFD)) = true

Figure 4. Terminal Authentication

7.1.3 Security Status

If Terminal Authentication was successfully performed, the IC SHALL grant access to stored sensitive data according to
the effective authorization of the authenticated terminal. If the effective authorization does not grant access rights to any
data in a LDS2 Application, selecting this application MUST be rejected by the IC.

The IC SHALL however restrict the terminal’s access rights to Secure Messaging established by the authenticated
ephemeral public key, i.e. the ephemeral public key provided by the terminal as part of Chip Authentication or PACE with
Chip Authentication Mapping. The IC MUST NOT accept more than one execution of Terminal Authentication within the
same session (cf. Section 9.8.1 and Section 9.8.3 on the definition of “session”).

 Note 1.— Access rights are valid as long as the Secure Messaging established by the authenticated
ephemeral public keys is active, therefore the security status is not affected by selecting or deselecting applications.

 Note 2.— Secure Messaging is not affected by Terminal Authentication. The eMRTD chip SHALL retain
Secure Messaging even if Terminal Authentication fails (unless a Secure Messaging error occurs).

36 Machine Readable Travel Documents

7.1.4 Cryptographic Specifications

7.1.4.1 Terminal Authentication with RSA

For Terminal Authentication with RSA the following algorithms and formats MUST be used.

7.1.4.1.1 Signature Algorithm

RSA [RFC-3447], [PKCS#1] as specified in Table 7 SHALL be used.

Table 7. Object Identifiers for Terminal Authentication with RSA

OID Signature Hash Parameters

id-TA-RSA-PSS-SHA-256 RSASSA-PSS SHA-256 default

id-TA-RSA-PSS-SHA-512 RSASSA-PSS SHA-512 default

The default parameters to be used with RSA-PSS are defined as follows:

 • Hash Algorithm: The hash algorithm is selected according to Table 7.

 • Mask Generation Algorithm: MGF1 [RFC-3447], [PKCS#1] using the selected hash algorithm.

 • Salt Length: Octet length of the output of the selected hash algorithm.

 • Trailer Field: 0xBC

7.1.4.1.2 Public Key Format

The TLV-Format [ISO/IEC 7816-8] as described in Doc 9303-12 SHALL be used.

 • The object identifier SHALL be taken from Table 7.

 • The bit length of the modulus SHALL be 2 048, or 3 072.

 • The bit length of the exponent SHALL be at most 32.

7.1.4.1.3 Public Key Compression

The terminal’s compressed ephemeral public key Comp(PKDH,IFD) is defined as the SHA-1 hash of the DH public value,
i.e. an octet string of fixed length 20.

7.1.4.2 Terminal Authentication with ECDSA

For Terminal Authentication with ECDSA the following algorithms and formats MUST be used.

7.1.4.2.1 Signature Algorithm

ECDSA with plain signature format [TR-03111] as specified in Table 8 SHALL be used.

Part 11. Security Mechanisms for MRTDs 37

Table 8. Object Identifiers for Terminal Authentication with ECDSA

OID Signature Hash

id-TA-ECDSA-SHA-224 ECDSA SHA-224

id-TA-ECDSA-SHA-256 ECDSA SHA-256

id-TA-ECDSA-SHA-384 ECDSA SHA-384

id-TA-ECDSA-SHA-512 ECDSA SHA-512

7.1.4.2.2 Public Key Format

The TLV-Format [ISO/IEC 7816-8] as described in Doc 9303-12 SHALL be used.

 • The object identifier SHALL be taken from Table 8.

 • The bit length of the curve SHALL be 224, 256, 320, 384 or 512.

 • Domain Parameters SHALL be compliant to [TR-03111].

7.1.4.2.3 Public Key Compression

The terminal’s compressed ephemeral public key Comp(PKDH,IFD) is defined as the x-coordinate of the ECDH public point,
i.e. an octet string of fixed length ⌈log256p⌉.

7.1.4.3 Certificate Validation

To validate a Terminal Certificate, the IC MUST be provided with a certificate chain starting at a trust-point stored on the
IC. Those trust-points are more or less recent public keys of the IC’s CVCA.

7.1.4.3.1 Initial State of the IC’s Trust-point(s)

The initial trust-point(s) SHALL be stored securely in the IC's memory in the production or (pre-)personalization phase.

The (pre-)personalization agent SHALL:

 • set the current date of the IC to the date of the (pre-)personalization; and

 • personalize the CVCA key with the most recent effective date as trust-point.

The (pre-)personalization agent MAY additionally personalize the previous CVCA key as trust-point.

7.1.4.3.2 Link Certificates

As the key pair used by the CVCA changes over time, CVCA Link Certificates have to be produced. CVCA Link Certificates
MUST be signed with the previous CVCA key, i.e. the CVCA key with the most recent effective date. The IC is REQUIRED
to internally update its trust-point(s) according to received valid link certificates.

The IC MUST be able to store up to two trust-points.

38 Machine Readable Travel Documents

 Note.— Due to the scheduling of CVCA Link Certificates (see Doc 9303-12), at most two trust-points need
to be stored on the IC.

7.1.4.3.3 Current Date

The IC MUST accept expired CVCA Link Certificates but it MUST NOT accept expired DV and Terminal Certificates. To
determine whether a certificate is expired, the IC SHALL use its current date.

Current Date: If the IC has no internal clock, the current date of the IC SHALL be approximated as described in the
following. The date is autonomously approximated by the IC using the most recent certificate effective date contained in
a valid CVCA Link Certificate, a DV Certificate or an Accurate Terminal Certificate.

Accurate Terminal Certificate: A Terminal Certificate is accurate if the issuing Document Verifier (DV) is trusted by the
IC to produce Terminal Certificates with the correct certificate effective date. CVCA Link Certificates, DV Certificates and
Terminal Certificates issued by a domestic DV SHALL be considered accurate by the IC. Other certificates MUST NOT
be considered accurate.

A terminal MAY send CVCA Link Certificates, DV Certificates, and Terminal Certificates to an IC to update the current
date and the trust-point stored on the IC even if the terminal does not intend to or is not able to continue with Terminal
Authentication.

 Note.— The IC only verifies that a certificate is apparently recent (i.e. with respect to the approximated
current date), unless the IC contains an internal clock.

7.1.4.3.4 General Validation Procedure

The certificate validation procedure consists of three steps:

 1. Certificate Verification: The signature MUST be valid and unless the certificate is a CVCA Link

Certificate, the certificate MUST NOT be expired. If the verification fails, the procedure SHALL be
aborted.

 Note.— The case of an expired CVCA Link Certificate can only occur if the IC has a source of time

beyond the approximated current date described above.

 2. Internal Status Update: The current date MUST be updated, the public key and the attributes (including

relevant certificate extensions) MUST be imported, new trust-points MUST be enabled, expired trust-
points MUST be disabled for the verification of DV Certificates.

 3. Cleanup: The chip SHALL provide at most two enabled trust-points per application. If more than two

trust-points for an application remain enabled after the internal status update, the trust-point with the
least recent effective date SHALL be disabled.

The operation of updating the current date and the operations of enabling and disabling a trust-point MUST be
implemented as an atomic operation.

Enabling a trust-point: The new trust-point SHALL be added to the list of trust-points.

Disabling a trust-point: Expired trust-points MUST NOT be used for the verification of DV Certificates. In case of ICs
where the current date may be advanced beyond the expiry date of a trust-point, e.g. ICs using an internal clock, expired
trust-points MUST remain usable for the verification of CVCA Link Certificates. Disabled trust-points MAY be deleted after
the successful import of the successive Link Certificate.

Part 11. Security Mechanisms for MRTDs 39

7.1.4.3.5 Example Validation Procedure

The following validation procedure, provided as an example, MAY be used to validate a certificate chain. For each received
certificate the IC performs the following steps:

 1. The IC verifies the signature on the certificate. If the signature is incorrect, the verification fails.

 2. If the certificate is not a CVCA Link Certificate, the certificate expiration date is compared to the IC’s

current date. If the expiration date is before the current date, the verification fails.

 3. The certificate is accepted as valid and the public key and the attributes (including relevant certificate

extensions) contained in the certificate are imported.

 • For CVCA, DV, and Accurate Terminal Certificates: The certificate effective date is compared to

the IC’s current date. If the current date is before the effective date, the current date is updated to
the effective date.

 • For CVCA Link Certificates: The new CVCA public key is added to the list of trust-points stored

securely in the IC’s memory. The new trust-point is then enabled.

 • For DV and Terminal Certificates: The new DV or terminal public key is temporarily imported for

subsequent certificate verification or Terminal Authentication, respectively.

 4. Expired trust-points stored securely in the IC’s memory are disabled for the verification of DV Certificates

and may be removed from the list of trust-points.

7.1.4.3.6 Effective Authorization

Each certificate SHALL contain a Certificate Holder Authorization Template (see Doc 9303-12) and MAY contain
Authorization Extensions (see Doc 9303-12, Section 7.2.2.6).

 • The Certificate Holder Authorization Template identifies the terminal type (this specification only

considers Inspection Systems, but other specifications may use different terminal types).

 • The Certificate Holder Authorization Template and the Authorization Extensions determine the relative

authorization of the certificate holder assigned by the issuing certificate authority.

To determine the effective authorization of a certificate holder, the IC MUST calculate a bitwise Boolean ’and’ of the relative
authorization contained in the Terminal Certificate, the referenced DV Certificate, and the referenced CVCA Certificate.

The effective authorization SHALL be interpreted by the IC as follows:

 • The effective role is a CVCA:

 - This link certificate was issued by the national CVCA.

 - The IC MUST update its internal trust-point, i.e. the public key and the effective authorization.

 - The certificate issuer is a trusted source of time and the IC MUST update its current date using the

Certificate Effective Date.

40 Machine Readable Travel Documents

 - The IC MUST NOT grant the CVCA access to sensitive data (i.e. the effective authorization
SHOULD be ignored).

 • The effective role is a DV:

 - The certificate was issued by the national CVCA for an authorized DV.

 - The certificate issuer is a trusted source of time and the IC MUST update its current date using the

Certificate Effective Date.

 - The IC MUST NOT grant a DV access to sensitive data (i.e. the effective authorization SHOULD

be ignored).

 • The effective role is a Terminal:

 - The certificate was issued by either a domestic or a foreign DV.

 - If the certificate is an accurate terminal certificate (cf. Section 7.1.4.3.3), the issuer is a trusted

source of time and the IC MUST update its current date using the Certificate Effective Date.

 - The IC MUST grant the authenticated terminal access to sensitive data according to the effective

authorization.

 Note.— The Certificate Holder Authorization Template and the Authorization Extensions can contain bits not
allocated to an access right (RFU bits). The IC MUST ignore these bits during evaluation of access rights.

7.1.4.3.7 Public Key Import

Public keys imported by the certificate validation procedure are either permanently or temporarily stored on the IC.

The IC SHOULD reject to import a public key, if the Certificate Holder Reference is already known to the IC.

Permanent Import: Public keys contained in CVCA Link Certificates SHALL be permanently imported by the IC and
MUST be stored securely in the IC’s memory. A permanently imported public key and its metadata SHALL fulfill the
following conditions:

 • It MAY be overwritten after expiration by a subsequent permanently imported public key.

 • It either MUST be overwritten by a subsequent permanently imported public key with the same

Certificate Holder Reference or the import MUST be rejected.

 • It MUST NOT be overwritten by a temporarily imported public key.

Enabling and disabling a permanently imported public key MUST be an atomic operation.

Temporary Import: Public keys contained in DV and Terminal Certificates SHALL be temporarily imported by the IC.
A temporarily imported public key and its metadata SHALL fulfill the following conditions:

 • It SHALL NOT be selectable or usable after a power down of the IC.

 • It MUST remain usable until the subsequent cryptographic operation is successfully completed

(i.e. PSO:Verify Certificate or External Authenticate).

Part 11. Security Mechanisms for MRTDs 41

 • It MAY be overwritten by a subsequent temporarily imported public key.

A terminal MUST NOT make use of any temporarily imported public key but the most recently imported.

Imported Metadata: For each permanently or temporarily imported public key, the following additional data contained in
the certificate (see Doc 9303-12) MUST be stored:

 • Certificate Holder Reference

 • Certificate Holder Authorization (effective role and effective authorization)

 • Certificate Effective Date

 • Certificate Expiration Date

 • Certificate Extensions (where applicable)

The calculation of the effective role (CVCA, DV, or Terminal) and the effective authorization of the certificate holder is
described in Section 7.1.4.3.6.

 Note.— The format of the stored data is dependent on the operating system and out of the scope of this
specification.

7.1.5 Application Protocol Data Units

The following sequence of commands SHALL be used with secure messaging to implement Terminal Authentication:

 • MSE:Set DST

 • PSO:Verify Certificate

 • MSE:Set AT

 • Get Challenge

 • External Authenticate

Steps 1 and 2 are repeated for every CV certificate to be verified (CVCA Link Certificates, DV Certificate, Terminal
Certificate).

42 Machine Readable Travel Documents

7.1.5.1 MSE:Set DST

The command MSE:Set DST is used to set up certificate verification.

Command

CLA Context Specific

INS 0x22 Manage Security Environment

P1/P2 0x81B6 Set Digital Signature Template for verification.

Data 0x83 Reference of a public key
ISO 8859-1 encoded name of the public key to be set

REQUIRED

Response

Data – Absent

Status Bytes 0x9000

0x6A88

other

Normal Operation
The key has been selected for the given purpose.
Referenced data not found
The selection failed as the public key is not available.
Operating system dependent error
The key has not been selected.

 Note.— Some operating systems accept the selection of an unavailable public key and return an error only
when the public key is used for the selected purpose.

7.1.5.2 PSO:Verify Certificate

The command PSO:Verify Certificate is used to verify and import certificates.

Command

CLA Context Specific

INS 0x2A Perform Security Operation

P1/P2 0x00BE Verify self-descriptive certificate.

Data 0x7F4E

0x5F37

Certificate body
The body of the certificate to be verified.
Signature
The signature of the certificate to be verified.

REQUIRED

REQUIRED

Response

Data – Absent

Status Bytes 0x9000

other

Normal processing
The certificate was successfully validated and the public key has been imported.
Operating system dependent error
The public key could not be imported (e.g. the certificate was not accepted).

Part 11. Security Mechanisms for MRTDs 43

7.1.5.3 MSE:Set AT

The use of MSE:Set AT for Terminal Authentication is indicated by P1/P2 set to 0x81A4, see table below.

Command

CLA Context Specific

INS 0x22 Manage Security Environment

P1/P2 0x81A4 Terminal Authentication:

Data 0x83 Reference of a public key / secret key
This data object is used to select the public key of the terminal by
its ISO 8859-1 encoded name.

REQUIRED

Response

Data – Absent

Status Bytes 0x9000

0x6A80

0x6A88

other

Normal processing

The protocol has been selected and initialized.
Incorrect parameters in the command data field

Algorithm not supported or initialization failed.
Referenced data not found

The referenced data is not available.
Operating system dependent error

The initialization of the protocol failed.

 Note.— Some operating systems accept the selection of an unavailable public key and return an error only
when the public key is used for the selected purpose.

7.1.5.4 Get Challenge

Command

CLA Context Specific

INS 0x84 Get Challenge

P1/P2 0x0000

Data – Absent

Le 0x08 REQUIRED

Response

Data rIC 8 bytes of randomness.

Status Bytes 0x9000
other

Normal processing
Operating system dependent error

44 Machine Readable Travel Documents

7.1.5.5 External Authenticate

Command

CLA Context Specific

INS 0x82 External Authenticate

P1/P2 0x0000 Keys and Algorithms implicitly known.

Data Signature generated by the terminal. REQUIRED

Response

Data – Absent

Status Bytes 0x9000

0x6300

0x6982

other

Normal processing
The authentication was successful. Access to data groups will be granted according to
the effective authorization of the corresponding verified certificate.
Warning
Signature verification failed.
Security status not satisfied
The authentication failed as the current authentication level of the terminal does not
allow to use Terminal Authentication (e.g. Terminal Authentication was already
performed, etc.).
Operating system dependent error
The authentication failed.

7.2 Encryption of Additional Biometrics

Restricting access to the additional biometrics MAY also be done by encrypting them. To be able to decrypt the encrypted
data, the inspection system MUST be provided with a decryption key. Defining the encryption/decryption algorithm and
the keys to be used is up to the implementing State and is outside the scope of this document.

The implementation of the protection of the additional biometrics depends on the State’s internal specifications or the
bilaterally agreed specifications between States sharing this information.

8. INSPECTION SYSTEM

In order to support the required functionality and the defined options that can be implemented on eMRTDs that will be
offered, the inspection system will have to meet certain pre-conditions.

8.1 Basic Access Control

Inspection systems supporting Basic Access Control MUST meet the following pre-conditions:

 1. The inspection system is equipped with means to acquire the MRZ from the physical document to derive the

Document Basic Access Keys (KEnc and KMAC) from the eMRTD.

Part 11. Security Mechanisms for MRTDs 45

 2. The inspection system’s software supports the protocol described in Section 4.3, in the case that an eMRTD
with Basic Access Control is offered to the system, including the encryption of the communication channel
with Secure Messaging.

8.2 Password Authenticated Connection Establishment

Inspection systems supporting PACE MUST meet the following pre-conditions:

 1. The inspection system is equipped with means to acquire the MRZ and/or the CAN from the physical

document.

 2. The inspection system’s software supports the protocol described in Section 4.4, in the case that an eMRTD

with PACE is offered to the system, including the encryption of the communication channel with Secure
Messaging.

8.3 Passive Authentication

To be able to perform a passive authentication of the data stored in the eMRTDs contactless IC, the inspection system
needs to have knowledge of key information of the issuing States or organizations:

 1. For each issuing State or organization, the Country Signing CA Certificate or the relevant information

extracted from the certificate SHALL be securely stored in the inspection system.

 2. Alternatively, for each issuing State or organization, the Document Signer Certificates (CDS) or the relevant

information extracted from the certificates SHALL be securely stored in the inspection system.

Before using a Country Signing CA Public Key of an issuing State or organization, trust in this key MUST be established
by the receiving State or organization.

Before using a Document Signer Certificate (CDS) for verification of a SOD, the inspection system SHALL verify its digital
signature, using the Country Signing CA Public Key.

Additionally, inspection systems SHALL have access to verified revocation information.

8.4 Active Authentication

Support of Active Authentication by inspection systems is OPTIONAL.

If the inspection system supports Active Authentication, it is REQUIRED that the inspection system have the ability to read
the visual MRZ.

If the inspection system supports Active Authentication, the inspection system’s software SHALL support the Active
Authentication protocol described in Section 6.1.

46 Machine Readable Travel Documents

8.5 Chip Authentication

Support of Chip Authentication by inspection systems is OPTIONAL.

If the inspection system supports Chip Authentication, it is REQUIRED that the inspection system have the ability to read
the visual MRZ.

If the inspection system supports Chip Authentication, the inspection system’s software SHALL support the Chip
Authentication protocol described in Section 6.2.

8.6 Terminal Authentication

Support of Terminal Authentication by inspection systems is OPTIONAL.

If the inspection system supports Terminal Authentication, it is REQUIRED that the inspection system has the capability
to securely store the private key of the inspection system. The inspection system MUST have access to its DV in regular
intervals to renew the terminal certificate.

If the inspection system supports Terminal Authentication, the software of the inspection system SHALL support the
Terminal Authentication protocol as described in Section 7.1.

8.7 Decryption of Additional Biometrics

The implementation of the protection of the optional additional biometrics depends on the State’s internal specifications or
the bilaterally agreed specifications between States sharing this information.

Part 11. Security Mechanisms for MRTDs 47

9. COMMON SPECIFICATIONS

9.1 ASN.1 Structures

The data structures SubjectPublicKeyInfo and AlgorithmIdentifier are defined as follows:

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
 }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
 }

Details on the parameters can be found in [X9.42] and [TR-03111].

9.2 Information on Supported Protocols and Supported Applications

The ASN.1 data structure SecurityInfos SHALL be provided by the eMRTD chip to indicate supported security
protocols. The data structure is specified as follows:

 SecurityInfos ::= SET OF SecurityInfo

 SecurityInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER,
 requiredData ANY DEFINED BY protocol,
 optionalData ANY DEFINED BY protocol OPTIONAL
 }

The elements contained in a SecurityInfo data structure have the following meaning:

 • The object identifier protocol identifies the supported protocol.

 • The open type requiredData contains protocol specific mandatory data.

 • The open type optionalData contains protocol specific optional data.

Security Infos for PACE

To indicate support for PACE SecurityInfos may contain the following entries:

 • At least one PACEInfo using a standardized domain parameter MUST be present.

 • For each supported set of explicit domain parameters a PACEDomainParameterInfo MUST be

present.

48 Machine Readable Travel Documents

Security Infos for Active Authentication

If ECDSA based signature algorithm is used for Active Authentication by the eMRTD chip, the SecurityInfos MUST
contain the following SecurityInfo entry:

 • ActiveAuthenticationInfo

Security Infos for Chip Authentication

To indicate support for Chip Authentication SecurityInfos may contain the following entries:

 • At least one ChipAuthenticationInfo and the corresponding

ChipAuthenticationPublicKeyInfo using explicit domain parameters MUST be present.

Security Infos for Terminal Authentication

To indicate support for Terminal Authentication SecurityInfos may contain the following entry:

 • At least one TerminalAuthenticationInfo SHALL be present.

Security Infos for present Applications

Section 3.11.2 of Doc 9303-10 recommends the presence of a transparent elementary file EF.DIR to indicate supported
applications. The file is mandatory if any LDS2 Application is present. Since EF.DIR is not signed and can therefore be
manipulated, e.g. to hide existing applications from the IFD, a secured copy of EF.DIR is provided as SecurityInfo
if any LDS2 Application is present.

Security Infos for Other Protocols

SecurityInfos MAY contain additional entries indicating support for other protocols or providing other information.
The inspection system MAY discard any unknown entry.

9.2.1 PACEInfo

This data structure provides detailed information on an implementation of PACE.

 • The object identifier protocol SHALL identify the algorithms to be used (i.e. key agreement,

symmetric cipher and MAC).

 • The integer version SHALL identify the version of the protocol. Only version 2 is supported by this

specification.

 • The integer parameterId is used to indicate the domain parameter identifier. It MUST be used if

the eMRTD chip uses standardized domain parameters (cf. Section 9.5.1), provides multiple explicit
domain parameters for PACE or protocol is one of the *-CAM-* OIDs. In case of PACE with Chip
Authentication Mapping, the parameterID also denotes the ID of the Chip Authentication key used,
i.e. the chip MUST provide a ChipAuthenticationPublicKeyInfo with keyID equal to
parameterID from this data structure.

Part 11. Security Mechanisms for MRTDs 49

 PACEInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-PACE-DH-GM-3DES-CBC-CBC |
 id-PACE-DH-GM-AES-CBC-CMAC-128 |
 id-PACE-DH-GM-AES-CBC-CMAC-192 |
 id-PACE-DH-GM-AES-CBC-CMAC-256 |
 id-PACE-ECDH-GM-3DES-CBC-CBC |
 id-PACE-ECDH-GM-AES-CBC-CMAC-128 |
 id-PACE-ECDH-GM-AES-CBC-CMAC-192 |
 id-PACE-ECDH-GM-AES-CBC-CMAC-256 |
 id-PACE-DH-IM-3DES-CBC-CBC |
 id-PACE-DH-IM-AES-CBC-CMAC-128 |
 id-PACE-DH-IM-AES-CBC-CMAC-192 |
 id-PACE-DH-IM-AES-CBC-CMAC-256 |
 id-PACE-ECDH-IM-3DES-CBC-CBC |
 id-PACE-ECDH-IM-AES-CBC-CMAC-128 |
 id-PACE-ECDH-IM-AES-CBC-CMAC-192 |
 id-PACE-ECDH-IM-AES-CBC-CMAC-256 |
 id-PACE-ECDH-CAM-AES-CBC-CMAC-128 |
 id-PACE-ECDH-CAM-AES-CBC-CMAC-192 |
 id-PACE-ECDH-CAM-AES-CBC-CMAC-256),
 version INTEGER, -- MUST be 2
 parameterId INTEGER OPTIONAL
 }

9.2.2 PACEDomainParameterInfo

This data structure is REQUIRED if the eMRTD chip provides explicit domain parameters for PACE and MUST be omitted
otherwise.

 • The object identifier protocol SHALL identify the type of the domain parameters (i.e. DH or ECDH).

 • The sequence domainParameter SHALL contain the domain parameters.

 • The integer parameterId MAY be used to indicate the local domain parameter identifier. It MUST

be used if the eMRTD chip provides multiple explicit domain parameters for PACE.

 PACEDomainParameterInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-PACE-DH-GM |
 id-PACE-ECDH-GM |
 id-PACE-DH-IM |
 id-PACE-ECDH-IM |
 id-PACE-ECDH-CAM),
 domainParameter AlgorithmIdentifier,
 parameterId INTEGER OPTIONAL
 }

 Note.— The eMRTD chip MAY support more than one set of explicit domain parameters (i.e. the chip may
support different algorithms and/or key lengths). In this case the identifier MUST be disclosed in the corresponding
PACEDomainParameterInfo.

50 Machine Readable Travel Documents

Domain parameters contained in PACEDomainParameterInfo are unprotected and may be insecure. Using insecure
domain parameters for PACE will leak the used password. eMRTD chips MUST support at least one set of standardized
domain parameters as specified in Section 9.5.1. Inspection systems MUST NOT use explicit domain parameters provided
by the eMRTD chip unless those domain parameters are explicitly known to be secure by the inspection systems.

Ephemeral public keys MUST be exchanged as plain public key values. More information on the encoding can be found
in Section 9.4.5.

9.2.3 PACE Object Identifier

The object identifiers used for PACE are contained in the subtree of bsi-de:

 bsi-de OBJECT IDENTIFIER ::= {
 itu-t(0) identified-organization(4) etsi(0)
 reserved(127) etsi-identified-organization(0) 7
 }

The following Object Identifier SHALL be used:

 id-PACE OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 4
 }

 id-PACE-DH-GM OBJECT IDENTIFIER ::= {id-PACE 1}
 id-PACE-DH-GM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-DH-GM 1}
 id-PACE-DH-GM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 2}
 id-PACE-DH-GM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 3}
 id-PACE-DH-GM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-DH-GM 4}

 id-PACE-ECDH-GM OBJECT IDENTIFIER ::= {id-PACE 2}
 id-PACE-ECDH-GM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 1}
 id-PACE-ECDH-GM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 2}
 id-PACE-ECDH-GM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 3}
 id-PACE-ECDH-GM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-ECDH-GM 4}

 id-PACE-DH-IM OBJECT IDENTIFIER ::= {id-PACE 3}
 id-PACE-DH-IM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-DH-IM 1}
 id-PACE-DH-IM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 2}
 id-PACE-DH-IM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 3}
 id-PACE-DH-IM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-DH-IM 4}

 id-PACE-ECDH-IM OBJECT IDENTIFIER ::= {id-PACE 4}
 id-PACE-ECDH-IM-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 1}
 id-PACE-ECDH-IM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 2}
 id-PACE-ECDH-IM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 3}
 id-PACE-ECDH-IM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-ECDH-IM 4}

 id-PACE-ECDH-CAM OBJECT IDENTIFIER ::= {id-PACE 6}
 id-PACE-ECDH-CAM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-PACE-ECDH-CAM 2}
 id-PACE-ECDH-CAM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-PACE-ECDH-CAM 3}
 id-PACE-ECDH-CAM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-PACE-ECDH-CAM 4}

Part 11. Security Mechanisms for MRTDs 51

9.2.4 ActiveAuthenticationInfo

If ECDSA based signature algorithm is used for Active Authentication by the eMRTD chip, the SecurityInfos in LDS
Data Group 14 of the eMRTD chip MUST contain following SecurityInfo entry:

 ActiveAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-icao-mrtd-security-
aaProtocolObject),
 version INTEGER, -- MUST be 1
 signatureAlgorithm OBJECT IDENTIFIER
 }

 id-icao-mrtd-security-aaProtocolObject OBJECT IDENTIFIER ::=
 { id-icao-mrtd-security 5 }

For signatureAlgorithm, the object identifiers defined in [TR-03111] SHALL be used.

 Note.— The Object Identifier id-icao-mrtd-security is defined in Doc 9303-10.

9.2.5 ChipAuthenticationInfo

This data structure provides detailed information on an implementation of Chip Authentication.

 • The object identifier protocol SHALL identify the algorithms to be used (i.e. key agreement,

symmetric cipher and MAC).

 • The integer version SHALL identify the version of the protocol. Currently, only version 1 is supported

by this specification.

 • The integer keyId MAY be used to indicate the local key identifier. It MUST be used if the eMRTD chip

provides multiple public keys for Chip Authentication.

 ChipAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(
 id-CA-DH-3DES-CBC-CBC |
 id-CA-DH-AES-CBC-CMAC-128 |
 id-CA-DH-AES-CBC-CMAC-192 |
 id-CA-DH-AES-CBC-CMAC-256 |
 id-CA-ECDH-3DES-CBC-CBC |
 id-CA-ECDH-AES-CBC-CMAC-128 |
 id-CA-ECDH-AES-CBC-CMAC-192 |
 id-CA-ECDH-AES-CBC-CMAC-256),
 version INTEGER, -- MUST be 1
 keyId INTEGER OPTIONAL
 }

52 Machine Readable Travel Documents

9.2.6 ChipAuthenticationPublicKeyInfo

This data structure provides a public key for Chip Authentication or PACE with Chip Authentication Mapping of the eMRTD
chip.
 • The object identifier protocol SHALL identify the type of the public key (i.e. DH or ECDH).

 • The sequence chipAuthenticationPublicKey SHALL contain the public key in encoded form.

 • The integer keyId MAY be used to indicate the local key identifier. It MUST be used if the eMRTD chip

provides multiple public keys for Chip Authentication or if this key is used for PACE with Chip
Authentication Mapping.

 ChipAuthenticationPublicKeyInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-PK-DH | id-PK-ECDH),
 chipAuthenticationPublicKey SubjectPublicKeyInfo,
 keyId INTEGER OPTIONAL
 }

 Note.— The eMRTD chip MAY support more than one Chip Authentication Key Pair (i.e. the chip may
support different algorithms and/or key lengths). In this case the local key identifier MUST be disclosed in the
corresponding ChipAuthenticationInfo and ChipAuthenticationPublicKeyInfo.

9.2.7 Chip Authentication Object Identifier

The following Object Identifier SHALL be used:

 id-PK OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 1
 }

 id-PK-DH OBJECT IDENTIFIER ::= {id-PK 1}
 id-PK-ECDH OBJECT IDENTIFIER ::= {id-PK 2}

 id-CA OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 3
 }

 id-CA-DH OBJECT IDENTIFIER ::= {id-CA 1}
 id-CA-DH-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-CA-DH 1}
 id-CA-DH-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-CA-DH 2}
 id-CA-DH-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-CA-DH 3}
 id-CA-DH-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-CA-DH 4}

 id-CA-ECDH OBJECT IDENTIFIER ::= {id-CA 2}
 id-CA-ECDH-3DES-CBC-CBC OBJECT IDENTIFIER ::= {id-CA-ECDH 1}
 id-CA-ECDH-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= {id-CA-ECDH 2}
 id-CA-ECDH-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= {id-CA-ECDH 3}
 id-CA-ECDH-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= {id-CA-ECDH 4}

Part 11. Security Mechanisms for MRTDs 53

9.2.8 TerminalAuthenticationInfo

This data structure provides detailed information on an implementation of Terminal Authentication.

 • The object identifier protocol SHALL identify the general Terminal Authentication Protocol as the

specific protocol may change over time.

 • The integer version SHALL identify the version of the protocol. Currently, version 1 is supported by

this specification. Note that later versions of [TR-03110] define version 2 of this protocol, which is out of
scope of this specification.

 TerminalAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-TA),
 version INTEGER -- MUST be 1
 }

9.2.9 Terminal Authentication Object Identifiers

The following Object Identifier SHALL be used:

id-TA OBJECT IDENTIFIER ::= {
 bsi-de protocols(2) smartcard(2) 2
}

id-TA-RSA OBJECT IDENTIFIER ::= {id-TA 1}
id-TA-RSA-PSS-SHA-256 OBJECT IDENTIFIER ::= {id-TA-RSA 4}
id-TA-RSA-PSS-SHA-512 OBJECT IDENTIFIER ::= {id-TA-RSA 6}

id-TA-ECDSA OBJECT IDENTIFIER ::= {id-TA 2}
id-TA-ECDSA-SHA-224 OBJECT IDENTIFIER ::= {id-TA-ECDSA 2}
id-TA-ECDSA-SHA-256 OBJECT IDENTIFIER ::= {id-TA-ECDSA 3}
id-TA-ECDSA-SHA-384 OBJECT IDENTIFIER ::= {id-TA-ECDSA 4}
id-TA-ECDSA-SHA-512 OBJECT IDENTIFIER ::= {id-TA-ECDSA 5}

9.2.10 EFDIRInfo

This data structure encapsulates a full copy of the content of the transparent elementary file EF.DIR contained in the
Master File.

 EFDIRInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-EFDIR),
 eFDIR OCTET STRING
 }

id-EFDIR OBJECT IDENTIFIER ::={
 id-icao-mrtd-security 13
}

54 Machine Readable Travel Documents

9.2.11 Storage on the Chip

To indicate support for the protocols and supported parameters, the eMRTD chip SHALL provide SecurityInfos in
transparent elementary files (The generic structure of these files can be found in Doc 9303-10):

 • The file EF.CardAccess contained in the Master File is REQUIRED if PACE is supported by the eMRTD

chip and SHALL contain the relevant SecurityInfos that are required for PACE:

 - PACEInfo

 - PACEDomainParameterInfo

 • The file EF.CardSecurity contained in the Master File is REQUIRED if

 - PACE with Chip Authentication Mapping is supported by the eMRTD chip, or

 - Terminal Authentication in the Master File is supported by the eMRTD chip, or

 - Chip Authentication in the Master File is supported by the eMRTD

 and SHALL contain the following SecurityInfos:

 - ChipAuthenticationInfo as required by Chip Authentication

 - ChipAuthenticationPublicKeyInfo as required for PACE-CAM/Chip Authentication

 - TermninalAuthenticationInfo as required by Terminal Authentication

 - EFDIRInfo if more than the eMRTD Application is present on the chip

 - The SecurityInfos contained in EF.CardAccess.

 • The file EF.DG14 contained in the eMRTD Application is REQUIRED if

 • PACE with Generic/Integrated Mapping is supported by the eMRTD chip

 • Terminal Authentication in the eMRTD Application is supported by the eMRTD chip, or

 • Chip Authentication in the eMRTD Application is supported by the eMRTD chip

 and SHALL contain the following SecurityInfos:

 - ChipAuthenticationInfo as required for Chip Authentication

 - ChipAuthenticationPublicKeyInfo as required for Chip Authentication

 - TermninalAuthenticationInfo as required by Terminal Authentication

 - The SecurityInfos contained in EF.CardAccess.

Part 11. Security Mechanisms for MRTDs 55

 • The full set of SecurityInfos (including SecurityInfos contained in EF.CardAccess not
specified in Doc 9303) SHALL additionally be stored in EF.DG14 of the eMRTD Application (see
Doc 9303-10).

The files MAY contain additional SecurityInfos out of scope of this specification.

 Note.— While the authenticity of SecurityInfos stored in EF.DG14 and EF.CardSecurity is protected
by Passive Authentication, the file EF.CardAccess is unprotected.

9.3 APDUs

9.3.1 Extended Length

Depending on the size of the cryptographic objects (e.g. public keys, signatures), APDUs with extended length fields
MUST be used to send this data to the eMRTD chip. For details on extended length see [ISO/IEC 7816-4].

9.3.1.1 eMRTD Chips

For eMRTD chips, support of extended length is CONDITIONAL. If the cryptographic algorithms and key sizes selected
by the issuing State require the use of extended length, the eMRTD chips SHALL support extended length. If the eMRTD
chip supports extended length, this MUST be indicated in the ATR/ATS or in EF.ATR/INFO as specified in [ISO/IEC 7816-
4].

9.3.1.2 Terminals

For terminals, support of extended length is REQUIRED. A terminal SHOULD examine whether or not support for extended
length is indicated in the eMRTD chip’s ATR/ATS or in EF.ATR/INFO before using this option. The terminal MUST NOT
use extended length for APDUs other than the following commands unless the exact input and output buffer sizes of the
eMRTD chip are explicitly stated in the ATR/ATS or in EF.ATR/INFO.

 • MSE:Set KAT
 • GENERAL AUTHENTICATE

9.3.2 Command Chaining

Command chaining MUST be used for the GENERAL AUTHENTICATE command to link the sequence of commands to
the execution of the PACE protocol. Command chaining MUST NOT be used for other purposes unless clearly indicated
by the chip. For details on command chaining see [ISO/IEC 7816-4].

9.3.3 Data Objects

The sender of a command or response APDU MUST transmit the data objects in the data field in the order defined in the
APDU descriptions.

56 Machine Readable Travel Documents

 Note.— Accepting data objects in any order is not required, but enhances interoperability for some
commands, e.g for MSE:Set AT/GENERAL AUTHENTICATE. However, care is to be taken in case of commands such as
PSO:Verify Certifcate, where the ordering is fixed for cryptographic reasons.

9.4 Public Key Data Objects

A public key data object is a constructed BER TLV structure containing an object identifier and several context specific
data objects nested within the cardholder public key template 0x7F49.

 • The object identifier is application specific and refers not only to the public key format (i.e. the context

specific data objects) but also to its usage.

 • The context-specific data objects are defined by the object identifier and contain the public key value

and the domain parameters.

The format of public keys data objects used in this specification is described below.

9.4.1 Data Object Encoding

An unsigned integer SHALL be converted to an octet string using the binary representation of the integer in big-endian
format. The minimum number of octets SHALL be used, i.e. leading octets of value 0x00 MUST NOT be used.

To encode elliptic curve points, uncompressed encoding according to [TR-03111] SHALL be used.

9.4.2 RSA Public Keys

The data objects contained in an RSA public key are shown in Table 9. The order of the data objects is fixed.

Table 9. RSA Public Key

Data Object Notation Tag Type CV Certificate

Object Identifier 0x06 Object Identifier m

Composite modulus n 0x81 Unsigned Integer m

Public exponent e 0x82 Unsigned Integer m

9.4.3 Diffie Hellman Public Keys

The data objects contained in a DH public key are shown in Table 10. The order of the data objects is fixed.

Part 11. Security Mechanisms for MRTDs 57

Table 10. Data objects for DH public keys

Data Object Notation Tag Type

Object Identifier 0x06 Object Identifier

Prime modulus p 0x81 Unsigned Integer

Order of the subgroup q 0x82 Unsigned Integer

Generator g 0x83 Unsigned Integer

Public Value y 0x84 Unsigned Integer

 Note.— The encoding of key components as unsigned integer implies that each of them is encoded over the
least number of bytes possible, i.e. without preceding bytes set to 0x00. In particular, DH public key may be encoded over
a number of bytes smaller than the number of bytes of the prime.

9.4.4 Elliptic Curve Public Keys

The data objects contained in an EC public key are shown in Table 11. The order of the data objects is fixed,
CONDITIONAL domain parameters MUST be either all present, except the cofactor, or all absent as follows:

Table 11. Data objects for ECDH public keys

Data Object Notation Tag Type

Object Identifier 0x06 Object Identifier

Prime modulus p 0x81 Unsigned Integer

First coefficient a 0x82 Unsigned Integer

Second coefficient b 0x83 Unsigned Integer

Base point G 0x84 Elliptic Curve Point

Order of the base point r 0x85 Unsigned Integer

Public point Y 0x86 Elliptic Curve Point

Cofactor f 0x87 Unsigned Integer

9.4.5 Ephemeral Public Keys

For ephemeral public keys the format and the domain parameters are already known. Therefore, only the plain public key
value, i.e. the public value y for Diffie-Hellman public keys and the public point Y for Elliptic Curve Public Keys, is used to
convey the ephemeral public key in a context specific data object.

58 Machine Readable Travel Documents

 Note.— The validation of ephemeral public keys is RECOMMENDED. For DH, the validation algorithm
requires the eMRTD chip to have a more detailed knowledge of the domain parameters (i.e. the order of the used subgroup)
than usually provided by PKCS#3.

9.5 Domain Parameters

With the exception of domain parameters contained in PACEInfo, all domain parameters SHALL be provided as
AlgorithmIdentifier (cf. Section 9.1).

Within PACEInfo, the ID of standardized domain parameters described in Table 12 SHALL be referenced directly.
Explicit domain parameters provided by PACEDomainParameterInfo MUST NOT use those IDs reserved for
standardized domain parameters.

9.5.1 Standardized Domain Parameters

The standardized domain parameters IDs described in the table below SHOULD be used. Explicit domain parameters
MUST NOT use those IDs reserved for standardized domain parameters.

The following object identifier SHOULD be used to reference standardized domain parameters in an
AlgorithmIdentifier (cf. Section 9.1):

 standardizedDomainParameters OBJECT IDENTIFIER ::= {
 bsi-de algorithms(1) 2
}

Within an AlgorithmIdentifier this object identifier SHALL reference the ID of the standardized domain parameter
as contained in Table as INTEGER, contained as parameters in the AlgorithmIdentifier.

Table 12. Standardized domain parameters

ID Name Size (bit) Type Reference

0 1024-bit MODP Group with 160-bit Prime Order
Subgroup

1024/160 GFP [RFC 5114]

1 2048-bit MODP Group with 224-bit Prime Order
Subgroup

2048/224 GFP [RFC 5114]

2 2048-bit MODP Group with 256-bit Prime Order
Subgroup

2048/256 GFP [RFC 5114]

3-7 RFU

8 NIST P-192 (secp192r1) 192 ECP [RFC 5114], [FIPS 186-4]

9 BrainpoolP192r1 192 ECP [RFC 5639]

10 NIST P-224 (secp224r1) * 224 ECP [RFC 5114], [FIPS 186-4]

Part 11. Security Mechanisms for MRTDs 59

ID Name Size (bit) Type Reference

11 BrainpoolP224r1 224 ECP [RFC 5639]

12 NIST P-256 (secp256r1) 256 ECP [RFC 5114], [FIPS 186-4]

13 BrainpoolP256r1 256 ECP [RFC 5639]

14 BrainpoolP320r1 320 ECP [RFC 5639]

15 NIST P-384 (secp384r1) 384 ECP [RFC 5114], [FIPS 186-4]

16 BrainpoolP384r1 384 ECP [RFC 5639]

17 BrainpoolP512r1 512 ECP [RFC 5639]

18 NIST P-521 (secp521r1) 521 ECP [RFC 5114], [FIPS 186-4]

19-31 RFU

* This curve cannot be used with the Integrated Mapping.

9.5.2 Explicit Domain Parameters

The object identifier dhpublicnumber or ecPublicKey for DH or ECDH, respectively, SHALL be used to reference
explicit domain parameters in an AlgorithmIdentifier (cf. Section 9.1):

 dhpublicnumber OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1
 }

 ecPublicKey OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x962(10045) keyType(2) 1
 }

In the case of elliptic curves, domain parameters MUST be described explicitly in the ECParameters structure,
contained as parameters in the AlgorithmIdentifier, i.e. named curves and implicit domain parameters MUST
NOT be used.

60 Machine Readable Travel Documents

9.6 Key Agreement Algorithms

This specification supports Diffie-Hellman and Elliptic Curve Diffie-Hellman key agreement as summarized in the following
table:

Table 7. Key agreement algorithms

Algorithm / Format DH ECDH

Key Agreement Algorithm [PKCS#3] ECKA [TR-03111]

X.509 Public Key Format [X9.42] [TR-03111]

TLV Public Key Format TLV, cf. Section 9.4.3 TLV, cf. Section 9.4.4

Ephemeral Public Key Validation [RFC 2631] [TR-03111]

9.7 Key Derivation Mechanism

9.7.1 Key Derivation Function

The key derivation function KDF(K,c), is defined as follows:

Input: The following inputs are required:

 • The shared secret value K (REQUIRED)

 • A 32-bit, big-endian integer counter c (REQUIRED)

Output: An octet string keydata.

Actions: The following actions are performed:

 • keydata = H(K || c)

 • Output octet string keydata

The key derivation function KDF(K,c) requires a suitable hash function denoted by H(), i.e the bit-length of the hash
function SHALL be greater or equal to the bit-length of the derived key. The hash value SHALL be interpreted as
big-endian byte output.

 Note.— The shared secret K is defined as an octet string. If the shared secret is generated with ECKA
[TR-03111], the x-coordinate of the generated point SHALL be used.

Part 11. Security Mechanisms for MRTDs 61

9.7.1.1 3DES

To derive 128-bit (112-bit excluding parity bits) 3DES [FIPS 46-3] keys the hash function SHA-1 [FIPS 180-4] SHALL be
used and the following additional steps MUST be performed:

 • Use octets 1 to 8 of keydata to form keydataA and octets 9 to 16 of keydata to form keydataB; additional

octets are not used.

 • Adjust the parity bits of keydataA and keydataB to form correct DES keys (OPTIONAL).

9.7.1.2 AES

To derive 128-bit AES [FIPS 197] keys the hash function SHA-1 [FIPS 180-4] SHALL be used and the following additional
step MUST be performed:

 • Use octets 1 to 16 of keydata; additional octets are not used.

To derive 192-bit and 256-bit AES [FIPS 197] keys SHA-256 [FIPS 180-4] SHALL be used. For 192-bit AES keys the
following additional step MUST be performed:

 • Use octets 1 to 24 of keydata; additional octets are not used.

9.7.2 Document Basic Access Keys

The computation of two key 3DES keys from a key seed (K) is used in the establishment of the Document Basic Access
Keys KEnc = KDF(K,1) and KMAC = KDF(K,2).

9.7.3 PACE

Let KDFπ(π) = KDF(f(π),3) be a key derivation function to derive encryption keys from a password π. The encoding of
passwords, i.e. K= f(π) is specified in Table 14:

Table 8. Password encodings

Password Encoding

MRZ SHA-1(Document Number || Date of Birth || Date of Expiry)

CAN [ISO/IEC 8859-1] encoded character string

 Note.— The document number to be used as input is always the complete document number. In case of
TD1-documents with document numbers longer than nine characters, the document number needs to be concatenated
from the document number field and the optional data field of the MRZ, excluding the filler character. See also Note j) in
Section 4.2.2 in Doc 9303-5.

62 Machine Readable Travel Documents

9.7.4 Secure Messaging Keys

Keys for encryption and authentication are derived with KDFEnc(K) = KDF(K,1) and KDFMAC(K) = KDF(K,2) respectively,
from a shared secret K.

9.8 Secure Messaging

9.8.1 Session Initiation

A session is started when secure messaging is established. Within a session the secure messaging keys
(i.e. established by Basic Access Control, PACE or Chip Authentication) may be changed.

Secure Messaging is based on either 3DES [FIPS 46-3] or AES [FIPS 197] in encrypt-then-authenticate mode, i.e. data
is padded, encrypted and afterwards the formatted encrypted data is input to the authentication calculation. The session
keys SHALL be derived using the key derivation function described in Section 9.7.1.

 Note.— Padding is always performed by the secure messaging layer, therefore the underlying message
authentication code need not perform any internal padding.

9.8.2 Send Sequence Counter

An unsigned integer SHALL be used as Send Sequence Counter (SSC). The bitsize of the SSC SHALL be equal to the
blocksize of the block cipher used for Secure Messaging, i.e., 64 bit for 3DES and 128 bit for AES.

The SSC SHALL be increased every time before a command or response APDU is generated, i.e., if the starting value is
x, in the first command the value of the SSC is x+1. The value of SSC for the first response is x+2.

If Secure Messaging is restarted, the SSC is used as follows:

 • The commands used for key agreement are protected with the old session keys and old SSC. This

applies in particular for the response of the last command used for session key agreement.

 • The Send Sequence Counter is set to its new start value, see Section 9.8.6.3 for 3DES and Section

9.8.7.3 for AES.

 • The new session keys and the new SSC are used to protect subsequent commands/responses.

9.8.3 Session Termination

The eMRTD chip MUST abort Secure Messaging if and only if a Secure Messaging error occurs or a plain APDU is
received.

If Secure Messaging is aborted, the eMRTD chip SHALL delete the stored session keys and reset the terminal’s access
rights.

 Note.— The eMRTD chip MAY implicitly select the Master File when a session is terminated.

Part 11. Security Mechanisms for MRTDs 63

9.8.4 Message Structure of SM APDUs

The SM Data Objects (see [ISO/IEC 7816-4]) MUST be used in the following order:

 • Command APDU: [DO‘85’ or DO‘87’] [DO‘97’] DO‘8E’.

 • Response APDU: [DO‘85’ or DO‘87’] [DO‘99’] DO‘8E’.

In case INS is even, DO‘87’ SHALL be used, and in case INS is odd, DO‘85’ SHALL be used.

All SM Data Objects MUST be encoded in BER TLV as specified in [ISO/IEC 7816-4]. The command header MUST be
included in the MAC calculation, therefore the class byte CLA = 0x0C MUST be used.

The actual value of Lc will be modified to Lc’ after application of Secure Messaging. If required, an appropriate data object
may optionally be included into the APDU data part in order to convey the original value of Lc.

Figure 5 shows the transformation of an unprotected command APDU to a protected command APDU in the case Data
and Le are available. If no Data is available, leave building DO ‘87’ out. If Le is not available, leave building DO ‘97’ out.
To avoid ambiguity it is RECOMMENDED not to use an empty value field of Le Data Object (see also Section 10.4 of
[ISO/IEC 7816-4]).

Figure 6 shows the transformation of an unprotected response APDU to a protected response APDU in case Data is
available. If no Data is available, leave building DO ‘87’ out.

9.8.5 SM Errors

Abortion of the Secure Channel for the eMRTD Application occurs when:

 • the contactless IC is de-powered; or

 • the contactless IC recognizes an SM error while interpreting a command. In this case the status bytes

must be returned without SM.

If Secure Messaging is aborted, the eMRTD chip SHALL delete the stored session keys and reset the terminal’s access
rights.

 Note.— There MAY be other circumstances in which the contactless IC aborts the session. It is not feasible
to provide a complete list of such circumstances.

64 Machine Readable Travel Documents

Figure 5. Computation of an SM command APDU for even INS Byte

Header

Header

Header

Header L ’c

Lc

Lc Le

Le

Le

Data

Data padded to multiple of block size

k bytes k bytes x bytes

Data encryption

 Encrypted Data

 Formatted Encrypted Data

 ‘87’ L ‘01’ Encrypted Data

MAC calculation

‘80’[‘00’..‘00’]

‘80’[‘00’..‘00’]‘80 00 00 00’[‘00’..‘00’]

‘00’ or
‘00 00’ *

*‘00’ for standard length
 ‘00 00’ for extended length

‘8E 08’ MAC

‘87’ L ‘01’

‘97’ L Le

‘97’ L Le

Data

CLA, INS, P1, P2

Part 11. Security Mechanisms for MRTDs 65

Figure 6. Computation of an SM response APDU for even INS Byte

Unprotected response APDU

Response data SW1-SW2
2 bytes

Pad data

‘80’ ‘00’

Encrypt

3DES or AES

Build DO ‘87’ Build DO ‘99’

SW1-SW2
2 bytes

SW1-SW2
2 bytes

SW1-SW2
2 bytes

SW1-SW2
2 bytesEncrypted response data‘87’ L ‘01’ ‘99’ ‘02’ Padding

‘80 00..’

Compute
Cryptographic
Checksum CC

‘8E’ ‘08’ CC‘87’ L ‘01’ <encdata> ‘99’ ‘02’
SW1-SW2

2 bytes

Protected APDU

Response data

66 Machine Readable Travel Documents

9.8.6 3DES Modes of Operation

9.8.6.1 Encryption

Two key 3DES in CBC mode with zero IV (i.e. 0x00 00 00 00 00 00 00 00) according to [ISO/IEC 11568-2] is used. Padding
according to [ISO/IEC 9797-1] padding method 2 is used.

9.8.6.2 Message Authentication

Cryptographic checksums are calculated using [ISO/IEC 9797-1] MAC algorithm 3 with block cipher DES, zero IV (8 bytes),
and [ISO/IEC 9797-1] padding method 2. The MAC length MUST be 8 bytes.

After a successful authentication the datagram to be MACed MUST be prepended by the Send Sequence Counter.

9.8.6.3 Send Sequence Counter

For Secure Messaging following BAC, the Send Sequence Counter SHALL be initialized by concatenating the four least
significant bytes of RND.IC and RND.IFD, respectively:

SSC = RND.IC (4 least significant bytes) || RND.IFD (4 least significant bytes).

In all other cases, the SSC SHALL be initialized to zero (i.e. 0x00 00 00 00 00 00 00 00).

9.8.7 AES Modes of Operation

9.8.7.1 Encryption

For message encryption AES [FIPS 197] SHALL be used in CBC-mode according to [ISO/IEC 10116] with key KSEnc and
IV = E(KSEnc, SSC).

9.8.7.2 Message Authentication

For message authentication AES SHALL be used in CMAC-mode [SP 800-38B] with KSMAC with a MAC length of 8 bytes.
The datagram to be authenticated SHALL be prepended by the Send Sequence Counter.

9.8.7.3 Send Sequence Counter

The Send Sequence Counter SHALL be initialized to zero (i.e. 0x00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00).

Part 11. Security Mechanisms for MRTDs 67

10. REFERENCES (NORMATIVE)

[X9.42] ANSI: X9.42, Public Key Cryptography for the Financial Services Industry: Agreement

of Symmetric Keys Using Discrete Logarithm Cryptography, 1999

[ISO/IEC 7816-4] ISO/IEC 7816-4:2013 Identification cards — Integrated circuit cards —

Part 4: Organization, security and commands for interchange

[ISO/IEC 7816-8] ISO/IEC 7816-8:2019 Identification cards — Integrated circuit cards —

Part 8: Commands and mechanisms for security operations

[ISO/IEC 8859-1] ISO/IEC 8859-1:1998 Information technology — 8-bit single-byte coded graphic

character sets — Part 1: Latin alphabet No. 1

[ISO/IEC 9796-2] ISO/IEC 9796-2:2010 Information technology — Security techniques — Digital

signature schemes giving message recovery — Part 2: Integer factorization based
mechanisms

[ISO/IEC 9797-1] ISO/IEC 9797-1:2011 Information technology — Security techniques — Message

Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher

[ISO/IEC 10116] ISO/IEC 10116:2017 Information technology — Security techniques — Modes of

operation for an n-bit block cipher

[ISO/IEC 11568-2] ISO/IEC 11568-2:2012 Financial services — Key management (retail) —

Part 2: Symmetric ciphers, their key management and life cycle

[ISO/IEC 11770-2] ISO/IEC 11770-2:2018 IT Security techniques — Key management —

Part 2: Mechanisms using symmetric techniques

[FIPS 46-3] NIST FIPS PUB 46-3, Data Encryption Standard (DES), 1999

[FIPS 180-4] NIST FIPS PUB 180-4, Secure hash standard, 2015

[FIPS 186-4] NIST FIPS PUB 186-4, Digital Signature Standard (DSS), 2013

[FIPS 197] NIST FIPS PUB 197, Specification for the Advanced Encryption Standard (AES),

2001

[SP 800-38B] NIST Special Publication 800-38B, Recommendation for Block Cipher Modes of

Operation: The CMAC Mode for Authentication, 2005

[RFC 2631] Rescorla, Eric: RFC 2631 Diffie-Hellman key agreement method, 1999

[RFC 3447] Jonsson, Jakob and Kaliski, Burt: RFC 3447, Public-key cryptography standards

(PKCS) #1: RSA cryptography specifications version 2.1, 2003

[RFC 5114] Lepinski, Matt; Kent, Stephen: RFC 5114 Additional Diffie-Hellman Groups for Use

with IETF Standards, 2008

68 Machine Readable Travel Documents

[RFC 5280] D. Cooper, S. Santesson, S. Farrell, S. Boyen, R. Housley, W. Polk, RFC 5280
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, 2008

[RFC 5639] Lochter, Manfred; Merkle, Johannes: RFC 5639 Elliptic Curve Cryptography (ECC)

Brainpool Standard Curves and Curve Generation, 2010

[TR-03110] BSI: Technical Guideline TR-03110: Advanced Security Mechanisms for Machine

Readable Travel Documents

[TR-03111] BSI: Technical Guideline TR-03111: Elliptic Curve Cryptography, Version 2.0, 2012

[PKCS#1] RSA Laboratories, PKCS#1 v2.2: RSA Cryptography Standard, 2012

[PKCS#3] RSA Laboratories, PKCS#3: Diffie-Hellman key-agreement standard, 1993

[Keesing2009] J. Bender, D. Kügler: Introducing the PACE solution, in: Keesing Journal of

Documents & Identity, Issue 30, Keesing, 2009.

[BFK2009] J. Bender, M. Fischlin, D. Kügler: Security Analysis of the PACE Key-Agreement

Protocol, in: Proceedings ISC 2009, LNCS volume 5735, Springer, 2009.

[BCIMRT2010] Brier, Eric; Coron, Jean-Sébastien; Icart, Thomas; Madore, David; Randriam, Hugues;

and Tibouch, Mehdi, Efficient Indifferentiable Hashing into Ordinary Elliptic Curves,
Advances in Cryptology – CRYPTO 2010, Springer-Verlag, 2010

— — — — — — — —

 App A-1

Appendix A to Part 11

ENTROPY OF MRZ-DERIVED ACCESS KEYS (INFORMATIVE)

Due to its simplicity Basic Access Control turned out to be a very successful protocol and it is implemented in almost every
eMRP.

The security provided by Basic Access Control is limited by the design of the protocol. The Document Basic Access Keys
(KEnc and KMAC) are generated from printed data with very limited randomness. The data that is used for the generation of
the keys are Document Number, Date of Birth, and Date of Expiry. As a consequence the resulting keys have a relatively
low entropy and are cryptographically weak. The actual entropy mainly depends on the type of the Document Number.
For a 10-year valid travel document the maximum strength of the keys is approximately:

 • 56 Bit for a numeric Document Number (3652 * 1012 possibilities)

 • 73 Bit for an alphanumeric Document Number (3652*369*103 possibilities).

Especially in the second case this estimation requires the Document Number to be randomly and uniformly chosen which
is usually not the case. Depending on the knowledge of the attacker, the actual entropy of the Document Basic Access
Key may be lower, e.g. if the attacker knows all Document Numbers in use or is able to correlate Document Numbers and
Dates of Expiry.

There is no straightforward way to strengthen Basic Access Control as its limitations are inherent to the design of the
protocol based on symmetric (“secret key”) cryptography. A cryptographically strong access control mechanism must
(additionally) use asymmetric (“public key”) cryptography.

Password Authenticated Connection Establishment (PACE) was designed to overcome this problem. It employs
asymmetric cryptography to establish session keys, whose strength is independent of the entropy of the used password.
If PACE is implemented with elliptic curve cryptography with 256 Bit curves and AES-128 (a common choice), the session
keys have 128 Bit entropy.

Two types of attacks must be distinguished:

 • Skimming: this is an online attack, i.e. the attacker tries to access the contactless IC in real time, e.g. by

guessing the password. If the protocol used to protect the contactless IC has no cryptographic
weakness, the success probability of the attacker is given by the time the attacker has access to the IC,
the duration of a single attempt to guess the password, and the entropy of the passport.

 • Eavesdropping: this is an offline attack, i.e. the attacker tries to decrypt intercepted communication

without access to the contactless IC. If the protocol used to establish the session keys has no
cryptographic weakness, the success probability is given by the strength of the session keys and the
computing power available to the attacker.

For further information see [Keesing2009] for a general discussion on entropy of session keys and a comparison of BAC
and PACE, and [BFK2009] for a cryptographic analysis of PACE.

— — — — — — — —

 App B-1

Appendix B to Part 11

POINT ENCODING FOR THE ECDH-INTEGRATED MAPPING
(INFORMATIVE)

B.1 HIGH-LEVEL DESCRIPTION OF THE POINT ENCODING METHOD

The algorithm takes as inputs the curve parameters (a, b, p, f) where (a, b) are the curve coefficients, p is the
characteristic of the prime field over which the curve

E : y2 ≡ x3 + ax + b (mod p)

is defined. The order of E is always of the form fq for some prime q and f is called the co-factor. PACE v2 requires the
generation of a point that belongs to the q-subgroup of E that we denote by E[q]. The point encoding also takes as input
a number t such that

0 < t < p

and returns, in constant time, a point that belongs to E[q]. As described in [BCIMRT2010], point encoding comes in two
flavours, depending on the coordinate system preferred by the implementation:

 • A first implementation, described in Section B.2, outputs the elliptic curve point in affine coordinates

(x, y);

 • An alternate implementation, presented in Section B.3, outputs the same point in Jacobian coordinates

(X, Y, Z).

Irrespective of the option taken, the generated point is identical in the sense that

x = XZ-2 mod p and y= YZ-3 mod p

and the implementation of the subsequent phase of PACE v2 (the elliptic curve Diffie-Hellman key exchange phase) can
therefore take advantage of using the option that best fits the interface of the cryptographic API that performs elliptic-curve
operations.

As noted hereafter, point encoding for affine coordinates roughly requires two modular exponentiations modulo p whereas
point encoding for Jacobian coordinates requires only a single one.

Note that for the two available implementations, point encoding explicitly requires that p ≡ 3 mod 4.

App B-2 Machine Readable Travel Documents

B.2 IMPLEMENTATION FOR AFFINE COORDINATES

The algorithm is implemented as follows:
Inputs: curve parameters (a, b, p, f) and t such that 0 < t < p
Output: a point (x, y) in the prime-order subgroup E[q] of E

1. Compute α = -t2 mod p
2. Compute X2 = -ba-1(1+(α+α2) -1) mod p
3. Compute X3 = α X2 mod p
4. Compute h2 = (X2)3+ a X2 + b mod p
5. Compute h3 = (X3)3+ a X3 + b mod p
6. Compute U = t3 h2 mod p
7. Compute A = (h2) p-1-(p+1)/4 mod p
8. If A2 h2=1 mod p define (x, y) = (X2, A h2 mod p)
9. Otherwise define (x, y) = (X3, A U mod p)
10. Output (x, y) = [f] (x, y).

Implementation Notes

Neglecting modular multiplications and additions, the execution time of the above implementation is dominated by two
modular exponentiations:

 • Step 2 can be rewritten

X2 = -ba-1(1+(α+α2) -1) = -b(1+α+α2) (a(α+α2)) p-2 mod p

 which essentially amounts to a modular exponentiation with exponent p-2;

 • Step 7 is a modular exponentiation with exponent p-1-(p+1)/4.

 Note.— Step 10 requires a scalar multiplication by the co-factor f. For many curves, the co-factor is equal to
1 so that this scalar multiplication can be avoided.

B.3 IMPLEMENTATION FOR JACOBIAN COORDINATES

The algorithm is implemented as follows:

Inputs: curve parameters (a, b, p, f) and t such that 0 < t < p

Output: a point (X, Y, Z) in the prime-order subgroup E[q] of E

1. Compute α = -t2 mod p
2. Compute Ζ = a(α+α2) mod p
3. Compute X2 = -bΖ (1+α+α2) mod p
4. Compute X3 = α X2 mod p
5. Compute h2 = (X2)3+ a X2 Z4+ b Z6 mod p
6. Compute h3 = (X3)3+ a X3 Z4 + b Z6 mod p
7. Compute U = -α t h2 mod p
8. Compute A = (h2) p-1-(p+1)/4 mod p
9. If A2 h2=1 mod p define (X, Y, Z) = (X2, A h2 mod p, Z)
10. Otherwise define (X, Y, Z) = (X3, A U mod p, Z)
11 Output (X, Y, Z) = [f](X, Y, Z).

Part 11. Security Mechanisms for MRTDs App B-3

Implementation Notes

Neglecting modular multiplications and additions, the execution time of the above implementation is dominated by the
single modular exponentiation of Step 7. Therefore, it is expected to be roughly twice as fast as the implementation for
affine coordinates.

 Note.— The scalar multiplication in Step 10 can be completely avoided when the co-factor f is equal to 1.

— — — — — — — —

 App C-1

Appendix C to Part 11

CHALLENGE SEMANTICS (INFORMATIVE)

Consider a signature based challenge-response protocol between an eMRTD chip (IC) and a terminal (IFD), where the
eMRTD chip wants to prove knowledge of its private key SKIC:

 • The terminal sends a randomly chosen challenge c to the eMRTD chip.

 • The eMRTD chip responds with the signature s=Sign(SKIC,c).

While this is a very simple and efficient protocol, the eMRTD chip in fact signs the message c without knowing the semantic
of this message. As signatures provide a transferable proof of authenticity, any third party can – in principle – be convinced
that the eMRTD chip has indeed signed this message.

Although c should be a random bit string, the terminal can as well generate this bit string in an unpredictable but (publicly)
verifiable way, e.g., let SKIFD be the terminal’s private key and

 c = Sign(SKIFD,IDIC||Date||Time||Location)

be the challenge generated by using a signature scheme with message recovery. The signature guarantees that the
terminal has indeed generated this challenge. Due to the transferability of the terminal’s signature, any third party having
trust in the terminal and knowing the corresponding public key PKIFD can check that the challenge was created correctly
by verifying this signature. Furthermore, due to the transferability of eMRTD chip’s signature on the challenge, the third
party can conclude that the assertion became true: The eMRTD chip was indeed at a certain date and time at a certain
location.

On the positive side, States may use Challenge Semantics for their internal use, e.g., to prove that a certain person indeed
has immigrated. On the negative side such proofs can be misused to track persons. In particular since Active
Authentication is not restricted to authorized terminals, misuse is possible. The worst scenario would be eMRTD chips
that provide Active Authentication without Basic Access Control. In this case a very powerful tracking system may be set
up by placing secure hardware modules at prominent places. The resulting logs cannot be faked due to the signatures.
Basic Access Control diminishes this problem to a certain extent, as interaction with the bearer is required. Nevertheless,
the problem remains, but is restricted to places where the travel document of the bearer is read anyway, e.g., by airlines
or hotels.

One might object that especially in a contactless scenario, challenges may be eavesdropped and reused at a different
date, time or location and thus render the proof at least unreliable. While eavesdropping challenges are technically possible,
the argument is still invalid. By assumption a terminal is trusted to produce challenges correctly, and it can be assumed
that it has checked the eMRTD chip’s identity before starting Active Authentication. Thus, the eavesdropped challenge will
contain an identity different from the identity of the prover who signs the challenge.

— — — — — — — —

 App D-1

Appendix D to Part 11

WORKED EXAMPLE: BASIC ACCESS CONTROL
(INFORMATIVE)

D.1 COMPUTE KEYS FROM KEY SEED (KSEED)

This Section provides an example for derivation of 3DES keys from a seed value Kseed. This procedure will be used as a
“subroutine” in the examples for Basic Access Control.

Input:
 Kseed = ‘239AB9CB282DAF66231DC5A4DF6BFBAE’

Compute encryption key (c = ‘00000001’):

1. Concatenate Kseed and c:
 D = ‘239AB9CB282DAF66231DC5A4DF6BFBAE00000001’

2. Calculate the SHA-1 hash of D:
 HSHA-1(D) = ‘AB94FCEDF2664EDFB9B291F85D7F77F27F2F4A9D’

3. Form DES keys Ka and Kb, intended to be used as first and second key for 3DES (i.e. the 3DES key is the

concatenation of Ka and Kb):
 Ka’ = ‘AB94FCEDF2664EDF’
 Kb’ = ‘B9B291F85D7F77F2’

4. Adjust parity bits:
 Ka = ‘AB94FDECF2674FDF’
 Kb = ‘B9B391F85D7F76F2’

Compute MAC computation key (c = ‘00000002’):

1. Concatenate Kseed and c:
 D = ‘239AB9CB282DAF66231DC5A4DF6BFBAE00000002’

2. Calculate the SHA-1 hash of D:
 HSHA-1(D) = ‘7862D9ECE03C1BCD4D77089DCF131442814EA70A’

3. Form keys Ka’ and Kb’:
 Ka’ = ‘7862D9ECE03C1BCD’
 Kb’ = ‘4D77089DCF131442’

4. Adjust parity bits:
 Ka = ‘7962D9ECE03D1ACD’
 Kb = ‘4C76089DCE131543’

App D-2 Machine Readable Travel Documents

D.2 DERIVATION OF DOCUMENT BASIC ACCESS KEYS (KENC AND KMAC)

This section provides examples how the Basic Access Keys are derived from the MRZ.

TD2 MRZ, document number exceeds 9 characters
1. Read the MRZ
 MRZ = I<UTOSTEVENSON<<PETER<JOHN<<<<<<<<<<
 D23145890<UTO3407127M95071227349<<<8

2. Construct the ‘MRZ information’ from the MRZ
 Document number = D23145890734 check digit = 9
 Date of Birth = 340712 check digit = 7
 Date of Expiry = 950712 check digit = 2
 MRZ_information = D23145890734934071279507122

Continue with step 3.

TD2 MRZ, document number 9 characters
1. Read the MRZ:
 MRZ = I<UTOERIKSSON<<ANNA<MARIA<<<<<<<<<<<
 L898902C<3UTO6908061F9406236<<<<<<<8

2. Construct the ‘MRZ_information’ from the MRZ:
 Document number = L898902C< check digit = 3
 Date of birth = 690806 check digit = 1
 Date of expiry = 940623 check digit = 6
 MRZ_information = L898902C<369080619406236

Continue with step 3.

TD1 MRZ, document number exceeds 9 characters
1. Read the MRZ
 MRZ = I<UTOD23145890<7349<<<<<<<<<<<
 3407127M9507122UTO<<<<<<<<<<<2
 STEVENSON<<PETER<JOHN<<<<<<<<<

2. Construct the ‘MRZ information’ from the MRZ
 Document number = D23145890734 check digit = 9
 Date of Birth = 340712 check digit = 7
 Date of Expiry = 950712 check digit = 2
 MRZ_information = D23145890734934071279507122

Continue with step 3.

TD1 MRZ, document number 9 characters
1. Read the MRZ
 MRZ = I<UTOL898902C<3<<<<<<<<<<<<<<<
 6908061F9406236UTO<<<<<<<<<<<1
 ERIKSSON<<ANNA<MARIA<<<<<<<<<<

Part 11. Security Mechanisms for MRTDs App D-3

2. Construct the ‘MRZ information’ from the MRZ
 Document number = L898902C< check digit = 3
 Date of Birth = 690806 check digit = 1
 Date of Expiry = 940623 check digit = 6
 MRZ_information = L898902C<369080619406236

3. Calculate the SHA-1 hash of ‘MRZ_information’:
 HSHA-1(MRZ_information) = ‘239AB9CB282DAF66231DC5A4DF6BFBAEDF477565’

4. Take the most significant 16 bytes to form the Kseed:
 Kseed = ‘239AB9CB282DAF66231DC5A4DF6BFBAE’

5. Calculate the basic access keys (KEnc and KMAC) according to Section 9.7.1/Appendix D.1:
 KEnc = ‘AB94FDECF2674FDFB9B391F85D7F76F2’
 KMAC = ‘7962D9ECE03D1ACD4C76089DCE131543’

D.3 AUTHENTICATION AND ESTABLISHMENT OF SESSION KEYS

This section provides an example for performing Basic Access Control.

Inspection system:

1. Request an 8 byte random number from the eMRTD’s contactless IC:

Command APDU:

CLA INS P1 P2 Le

00 84 00 00 08

Response APDU:

Response data field SW1-SW2

RND.IC 9000

 RND.IC = ‘4608F91988702212’

2. Generate an 8 byte random and a 16 byte random:
 RND.IFD = ‘781723860C06C226’
 KIFD = ‘0B795240CB7049B01C19B33E32804F0B’

3. Concatenate RND.IFD, RND.IC and KIFD:
 S = ‘781723860C06C2264608F91988702212
 0B795240CB7049B01C19B33E32804F0B’

4. Encrypt S with 3DES key KEnc:
 EIFD = ‘72C29C2371CC9BDB65B779B8E8D37B29
 ECC154AA56A8799FAE2F498F76ED92F2’

App D-4 Machine Readable Travel Documents

5. Compute MAC over EIFD with 3DES key KMAC:
 MIFD = ‘5F1448EEA8AD90A7’

6. Construct command data for EXTERNAL AUTHENTICATE and send command APDU to the eMRTD’s
contactless IC:
 cmd_data = ‘72C29C2371CC9BDB65B779B8E8D37B29ECC154AA
 56A8799FAE2F498F76ED92F25F1448EEA8AD90A7’

Command APDU:

CLA INS P1 P2 Lc Command data field Le

00 82 00 00 28 cmd_data 28

eMRTD’s contactless IC:

1. Decrypt and verify received data and compare RND.IC with response on GET CHALLENGE.

2. Generate a 16 byte random:
 KIC = ‘0B4F80323EB3191CB04970CB4052790B’

3. Calculate XOR of KIFD and KIC:
 Kseed = ‘0036D272F5C350ACAC50C3F572D23600’

4. Calculate session keys (KSEnc and KSMAC) according to Section 9.7.1/Appendix D.1:
 KSEnc = ‘979EC13B1CBFE9DCD01AB0FED307EAE5’
 KSMAC = ‘F1CB1F1FB5ADF208806B89DC579DC1F8’

5. Calculate send sequence counter:
 SSC = ‘887022120C06C226’

6. Concatenate RND.IC, RND.IFD and KIC:
 R = ‘4608F91988702212781723860C06C226
 0B4F80323EB3191CB04970CB4052790B’

7. Encrypt R with 3DES key KEnc:
 EIC = ‘46B9342A41396CD7386BF5803104D7CE
 DC122B9132139BAF2EEDC94EE178534F’

8. Compute MAC over EIC with 3DES key KMAC:
 MIC = ‘2F2D235D074D7449’

9. Construct response data for EXTERNAL AUTHENTICATE and send response APDU to the inspection
system:
 resp_data = ‘46B9342A41396CD7386BF5803104D7CEDC122B91
 32139BAF2EEDC94EE178534F2F2D235D074D7449’

Part 11. Security Mechanisms for MRTDs App D-5

Response APDU:

Response data field SW1-SW2

resp_data 9000

Inspection system:

1. Decrypt and verify received data and compare received RND.IFD with generated RND.IFD.

2. Calculate XOR of KIFD and KIC:
 Kseed = ‘0036D272F5C350ACAC50C3F572D23600’

3. Calculate session keys (KSEnc and KSMAC) according to Section 9.7.1/Appendix D.1:
 KSEnc = ‘979EC13B1CBFE9DCD01AB0FED307EAE5’
 KSMAC = ‘F1CB1F1FB5ADF208806B89DC579DC1F8’

4. Calculate send sequence counter:
 SSC = ‘887022120C06C226’

D.4 SECURE MESSAGING

After authentication and establishment of the session keys, the inspection system selects the EF.COM (File ID = ‘011E’)
and reads the data using secure messaging. The calculated KSEnc, KSMAC and SSC (previous steps 3 and 4 of the
inspection system) will be used.

First the EF.COM will be selected, then the first four bytes of this file will be read so that the length of the structure in the
file can be determined and after that the remaining bytes are read.

1. Select EF.COM

 Unprotected command APDU:

CLA INS P1 P2 Lc Command data field
00 A4 02 0C 02 01 1E

 a) Mask class byte and pad command header:
 CmdHeader = ‘0CA4020C80000000’

 b) Pad data:
 Data = ‘011E800000000000’

 c) Encrypt data with KSEnc:
 EncryptedData = ‘6375432908C044F6’

 d) Build DO‘87’:
 DO87 = ‘8709016375432908C044F6’

App D-6 Machine Readable Travel Documents

 e) Concatenate CmdHeader and DO‘87’:
 M = ‘0CA4020C800000008709016375432908C044F6’

 f) Compute MAC of M:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C227’

 ii) Concatenate SSC and M and add padding:
 N = ‘887022120C06C2270CA4020C80000000
 8709016375432908C044F68000000000’

 iii) Compute MAC over N with KSMAC:
 CC = ‘BF8B92D635FF24F8’

 g) Build DO‘8E’:
 DO8E = ‘8E08BF8B92D635FF24F8’

 h) Construct and send protected APDU:
 ProtectedAPDU = ‘0CA4020C158709016375432908C0
 44F68E08BF8B92D635FF24F800’

 i) Receive response APDU of eMRTD’s contactless IC:
 RAPDU = ‘990290008E08FA855A5D4C50A8ED9000’

 j) Verify RAPDU CC by computing MAC of DO‘99’:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C228’

 ii) Concatenate SSC and DO‘99’ and add padding:
 K = ‘887022120C06C2289902900080000000’

 iii) Compute MAC with KSMAC:
 CC’ = ‘FA855A5D4C50A8ED’

 iv) Compare CC’ with data of DO‘8E’ of RAPDU.
 ‘FA855A5D4C50A8ED’ == ‘FA855A5D4C50A8ED’ ? YES.

2. Read Binary of first four bytes:

 Unprotected command APDU:

CLA INS P1 P2 Le

00 B0 00 00 04

 a) Mask class byte and pad command header:
 CmdHeader = ‘0CB0000080000000’

Part 11. Security Mechanisms for MRTDs App D-7

 b) Build DO‘97’:
 DO97 = ‘970104’

 c) Concatenate CmdHeader and DO‘97’:
 M = ‘0CB0000080000000970104’

 d) Compute MAC of M:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C229’

 ii) Concatenate SSC and M and add padding:
 N = ‘887022120C06C2290CB00000
 800000009701048000000000’

 iii) Compute MAC over N with KSMAC:
 CC = ‘ED6705417E96BA55’

 e) Build DO‘8E’:
 DO8E = ‘8E08ED6705417E96BA55’

 f) Construct and send protected APDU:
 ProtectedAPDU = ‘0CB000000D9701048E08ED6705417E96BA5500’

 g) Receive response APDU of eMRTD’s contactless IC:
 RAPDU = ‘8709019FF0EC34F992265199029000
 8E08AD55CC17140B2DED9000’

 h) Verify RAPDU CC by computing MAC of concatenation DO‘87’ and DO‘99’:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C22A’

 ii) Concatenate SSC, DO‘87’ and DO‘99’ and add padding:
 K = ‘887022120C06C22A8709019F
 F0EC34F99226519902900080’

 iii) Compute MAC with KSMAC:
 CC’ = ‘AD55CC17140B2DED’

 iv) Compare CC’ with data of DO‘8E’ of RAPDU:
 ‘AD55CC17140B2DED’ == ‘AD55CC17140B2DED’ ? YES.

 i) Decrypt data of DO‘87’ with KSEnc:
 DecryptedData = ‘60145F01’

 j) Determine length of structure:
 L = ‘14’ + 2 = 22 bytes

App D-8 Machine Readable Travel Documents

3. Read Binary of remaining 18 bytes from offset 4:

 Unprotected command APDU:

CLA INS P1 P2 Le

00 B0 00 04 12

 a) Mask class byte and pad command header:
 CmdHeader = ‘0CB0000480000000’

 b) Build DO‘97’:
 DO97 = ‘970112’

 c) Concatenate CmdHeader and DO‘97’:
 M = ‘0CB0000480000000970112’

 d) Compute MAC of M:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C22B’

 ii) Concatenate SSC and M and add padding:
 N = ‘887022120C06C22B0CB00004
 800000009701128000000000’

 iii) Compute MAC over N with KSMAC:
 CC = ‘2EA28A70F3C7B535’

 e) Build DO‘8E’:
 DO8E = ‘8E082EA28A70F3C7B535’

 f) Construct and send protected APDU:
 ProtectedAPDU = ‘0CB000040D9701128E082EA28A70F3C7B53500’

 g) Receive response APDU of eMRTD’s contactless IC:
 RAPDU = ‘871901FB9235F4E4037F2327DCC8964F1F9B8C30F42
 C8E2FFF224A990290008E08C8B2787EAEA07D749000’

 h) Verify RAPDU CC by computing MAC of concatenation DO‘87’ and DO‘99’:

 i) Increment SSC with 1:
 SSC = ‘887022120C06C22C’

 ii) Concatenate SSC, DO‘87’ and DO‘99’ and add padding:
 K = ‘887022120C06C22C871901FB9235F4E4037F232
 7DCC8964F1F9B8C30F42C8E2FFF224A99029000’

 iii) Compute MAC with KSMAC:
 CC’ = ‘C8B2787EAEA07D74’

 iv) Compare CC’ with data of DO‘8E’ of RAPDU:
 ‘C8B2787EAEA07D74’ == ‘C8B2787EAEA07D74’ ? YES.

Part 11. Security Mechanisms for MRTDs App D-9

 i) Decrypt data of DO‘87’ with KSEnc:
 DecryptedData = ‘04303130365F36063034303030305C026175’

RESULT:

EF.COM data = ‘60145F0104303130365F36063034303030305C026175’

— — — — — — — —

 App E-1

Appendix E to Part 11

WORKED EXAMPLE: PASSIVE AUTHENTICATION
(INFORMATIVE)

Step 1. Read the Document Security Object (SOD) (optionally containing the Document Signer Certificate (CDS))

from the contactless IC.

Step 2: Read the Document Signer (DS) from the Document Security Object (SOD).

Step 3: The inspection system verifies SOD by using Document Signer Public Key.

Step 4: The inspection system verifies CDS by using the Country Signing CA Public Key.

If both verifications in step 3 and 4 are correct, then this ensures that the contents of SOD can be trusted and can be used
in the inspection process.

Step 5: Read the relevant Data Groups from the LDS.

Step 6: Calculate the hashes of the relevant Data Groups.

Step 7: Compare the calculated hashes with the corresponding hash values in the SOD.

If the hash values in step 7 are identical, this ensures that the contents of the Data Group are authentic and unchanged.

— — — — — — — —

 App F-1

Appendix F to Part 11

WORKED EXAMPLE: ACTIVE AUTHENTICATION
(INFORMATIVE)

This worked example uses the following settings:

1. Integer factorization-based mechanism: RSA

2. Modulus length (k): 1 024 bits (128 bytes)

3. Hash algorithm: SHA-1

Inspection system:

Step 1. Generate an 8 byte random:
 RND.IFD = ‘F173589974BF40C6’

Step 2. Construct command for internal authenticate and send command APDU to the eMRTD’s

 contactless IC:

 Command APDU

CLA INS P1 P2 Lc Command data field Le

00 88 00 00 08 RND.IFD 00

eMRTD’s contactless IC:

Step 3. Determine M2 from incoming APDU:
 M2 = ‘F173589974BF40C6’

Step 4. Create the trailer:
 T = ‘BC’ (i.e. SHA-1)
 t (length of T in octets) = 1

Step 5. Determine lengths:
 a. c = k – Lh – 8t – 4 = 1024 – 160 – 8 – 4 = 852 bits
 b. LM1 = c – 4 = 848 bits

Step 6. Generate nonce M1 of length LM1:
 M1 = ‘9D2784A67F8E7C659973EA1AEA25D95B
 6C8F91E5002F369F0FBDCE8A3CEC1991
 B543F1696546C5524CF23A5303CD6C98
 599F40B79F377B5F3A1406B3B4D8F967
 84D23AA88DB7E1032A405E69325FA91A
 6E86F5C71AEA978264C4A207446DAD4E
 7292E2DCDA3024B47DA8’

App F-2 Machine Readable Travel Documents

Step 7. Create M:
 M = M1 | M2 =‘9D2784A67F8E7C659973EA1AEA25D95B
 6C8F91E5002F369F0FBDCE8A3CEC1991
 B543F1696546C5524CF23A5303CD6C98
 599F40B79F377B5F3A1406B3B4D8F967
 84D23AA88DB7E1032A405E69325FA91A
 6E86F5C71AEA978264C4A207446DAD4E
 7292E2DCDA3024B47DA8F173589974BF
 40C6’

Step 8. Calculate SHA-1 digest of M:
 H = SHA-1(M) = ‘C063AA1E6D22FBD976AB0FE73D94D2D9
 C6D88127’

Step 9.2 Construct the message representative:
 F = ‘6A’ | M1 | H | T =
 ‘6A9D2784A67F8E7C659973EA1AEA25D9
 5B6C8F91E5002F369F0FBDCE8A3CEC19
 91B543F1696546C5524CF23A5303CD6C
 98599F40B79F377B5F3A1406B3B4D8F9
 6784D23AA88DB7E1032A405E69325FA9
 1A6E86F5C71AEA978264C4A207446DAD
 4E7292E2DCDA3024B47DA8C063AA1E6D
 22FBD976AB0FE73D94D2D9C6D88127BC’

Step 10. Encrypt F with the Active Authentication Private Key to form the signature:
 S = ‘756B683B036A6368F4A2EB29EA700F96
 E26100AFC0809F60A91733BA29CAB362
 8CB1A017190A85DADE83F0B977BB513F
 C9C672E5C93EFEBBE250FE1B722C7CEE
 F35D26FC8F19219C92D362758FA8CB0F
 F68CEF320A8753913ED25F69F7CEE772
 6923B2C43437800BBC9BC028C49806CF
 2E47D16AE2B2CC1678F2A4456EF98FC9’

Step 11. Construct response data for INTERNAL AUTHENTICATE and send response APDU to the
 inspection system:

 Response APDU:

Response data field SW1-SW2

S 9000

2. Since the known part (RND.IFD) is not returned, but must be appended by the IFD itself, Partial Recovery applies (‘6A’).

Part 11. Security Mechanisms for MRTDs App F-3

Inspection system:

Step 12. Decrypt the signature with the public key:
 F = ‘6A9D2784A67F8E7C659973EA1AEA25D9
 5B6C8F91E5002F369F0FBDCE8A3CEC19
 91B543F1696546C5524CF23A5303CD6C
 98599F40B79F377B5F3A1406B3B4D8F9
 6784D23AA88DB7E1032A405E69325FA9
 1A6E86F5C71AEA978264C4A207446DAD
 4E7292E2DCDA3024B47DA8C063AA1E6D
 22FBD976AB0FE73D94D2D9C6D88127BC’

Step 13. Determine hash algorithm by trailer T*:
 T = ‘BC’ (i.e. SHA-1)

Step 14. Extract digest:
 D = ‘C063AA1E6D22FBD976AB0FE73D94D2D9
 C6D88127’

Step 15. Extract M1:
 M1 =‘9D2784A67F8E7C659973EA1AEA25D95B
 6C8F91E5002F369F0FBDCE8A3CEC1991
 B543F1696546C5524CF23A5303CD6C98
 599F40B79F377B5F3A1406B3B4D8F967
 84D23AA88DB7E1032A405E69325FA91A
 6E86F5C71AEA978264C4A207446DAD4E
 7292E2DCDA3024B47DA8’

Step 16. Header indicates partial recovery but signature has modulus length so concatenate M1 with
 known M2 (i.e. RND.IFD):
 M* = ‘9D2784A67F8E7C659973EA1AEA25D95B
 6С8F91E5002F369F0FBDCE8A3СEС1991
 B543F1696546С5524СF23A5303СD6С98
 599F40B79F377B5F3A1406B3B4D8F967
 84D23AA88DВ7E1032A405E69325FA91A
 6E86F5C71AEA978264C4A207446DAD4E
 7292E2DCDA3024B47DA8F173589974BF
 40C6’

Step 17. Calculate SHA-1 digest of M*:
 D* = ‘C063AA1E6D22FBD976AB0FE73D94D2D9
 C6D88127’

Step 18. Compare D and D*:
 D is equal to D* so verification successful.

— — — — — — — —

 App G-1

Appendix G to Part 11

WORKED EXAMPLE: PACE – GENERIC MAPPING
(INFORMATIVE)

This appendix provides two worked examples for the PACE protocol as defined in Section 4.4 using the generic mapping.
The first example is based on ECDH while the second one uses DH. All numbers contained in the tables are noted
hexadecimal.

In both examples, the MRZ is used as password. This also leads to the same symmetric key Kπ. The relevant data fields
of the MRZ including the check digits are:

 • Document Number: T220001293;

 • Date of Birth: 6408125;

 • Date of Expiry: 1010318.

Hence, the encoding K of the MRZ and the derived encryption key Kπ are

K 7E2D2A41 C74EA0B3 8CD36F86 3939BFA8 E9032AAD

Kπ 89DED1B2 6624EC1E 634C1989 302849DD

G.1 ECDH BASED EXAMPLE

This example is based on ECDH applying the standardized BrainpoolP256r1 domain parameters (see [RFC 5639]).

The first section introduces the corresponding PACEInfo. Subsequently, the exchanged APDUs including all generated
nonces and ephemeral keys are listed and examined.

Elliptic Curve Parameters

Using standardized domain parameters, all information required to perform PACE is given by the data structure
PACEInfo. In particular, no PACEDomainParameterInfo is needed.

PACEInfo 3012060A 04007F00 07020204 02020201 0202010D

App G-2 Machine Readable Travel Documents

The detailed structure of PACEInfo is itemized in the following table.

Tag Length Value ASN.1 Type Comment

30 12 SEQUENCE PACEInfo

06 0A 04 00 7F 00 07 02 02 04 02
02

OBJECT
IDENTIFIER

 PACE with ECDH, generic mapping and
AES 128 session keys

02 01 02 INTEGER Version 2

02 01 0D INTEGER Brainpool P256r1 Standardized Domain
Parameters

For convenience, an ASN.1 encoding of the BrainpoolP256r1domain parameters is given below.

Tag Length Value ASN.1 Type Comment

30 81 EC SEQUENCE Domain parameter

06 07 2A 86 48 CE 3D 02 01 OBJECT
IDENTIFIER

 Algorithm id-ecPublicKey

30 81 E0 SEQUENCE Domain Parameter

02 01 01 INTEGER Version

30 2C SEQUENCE Underlying field

06 07 2A 86 48 CE 3D 01 01 OBJECT
IDENTIFIER

 Prime field

02 21 00 A9 FB 57 DB A1 EE A9 BC
3E 66 0A 90 9D 83 8D 72 6E 3B
F6 23 D5 26 20 28 20 13 48 1D
1F 6E 53 77

INTEGER Prime p

30 44 SEQUENCE Curve equation

04 20 7D 5A 09 75 FC 2C 30 57 EE F6
75 30 41 7A FF E7 FB 80 55 C1
26 DC 5C 6C E9 4A 4B 44 F3 30
B5 D9

OCTET STRING Parameter a

04 20 26 DC 5C 6C E9 4A 4B 44 F3 30
B5 D9 BB D7 7C BF 95 84 16 29
5C F7 E1 CE 6B CC DC 18 FF
8C 07 B6

OCTET STRING Parameter b

Part 11. Security Mechanisms for MRTDs App G-3

Tag Length Value ASN.1 Type Comment

04 41 OCTET STRING Group generator G

 04 - Uncompressed point

 8B D2 AE B9 CB 7E 57 CB 2C
4B 48 2F FC 81 B7 AF B9 DE 27
E1 E3 BD 23 C2 3A 44 53 BD 9A
CE 32 62

- x-coordinate

 54 7E F8 35 C3 DA C4 FD 97 F8
46 1A 14 61 1D C9 C2 77 45 13
2D ED 8E 54 5C 1D 54 C7 2F 04
69 97

- y-coordinate

02 21 00 A9 FB 57 DB A1 EE A9 BC
3E 66 0A 90 9D 83 8D 71 8C 39
7A A3 B5 61 A6 F7 90 1E 0E 82
97 48 56 A7

INTEGER Group order n

02 01 01 INTEGER Cofactor f

Application flow of the ECDH-based example

To initialize PACE, the terminal sends the command MSE:Set AT to the chip.

T>C : 00 22 C1 A4 0F 80 0A 04 00 7F 00 07 02 02 04 02 02 83 01 01

C>T : 90 00

Here, T>C is an abbreviation for an APDU sent from terminal to chip while C>T denotes the corresponding response sent
by the chip to the terminal. The encoding of the command is explained in the next table.

Command

CLA 00 Plain

INS 22 Manage security environment

P1/P2 C1 A4 Set Authentication Template for mutual authentication

Lc 0F Length of data field

Data Tag Length Value Comment

 80 0A 04 00 7F 00 07 02 02 04 02
02

Cryptographic mechanism: PACE with ECDH,
generic mapping and AES128 session keys

 83 01 01 Password: MRZ

App G-4 Machine Readable Travel Documents

Response

Status Bytes 90 00 Normal processing

Encrypted Nonce

Next, the chip randomly generates the nonce s and encrypts it by means of Kπ .

Decrypted Nonce s 3F00C4D3 9D153F2B 2A214A07 8D899B22

Encrypted Nonce z 95A3A016 522EE98D 01E76CB6 B98B42C3

The encrypted nonce is queried by the terminal.

T>C : 10 86 00 00 02 7C 00 00

C>T : 7C 12 80 10 95 A3 A0 16 52 2E E9 8D 01 E7 6C B6 B9 8B 42 C3 90 00

The encoding of the command APDU and the corresponding response can be found in the following table.

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 02 Length of data

Data Tag Length Value Comment

 7C 00 - Absent

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 12 Dynamic Authentication Data

 80 10 95 A3 A0 16 52 2E E9
8D 01 E7 6C B6 B9 8B
42 C3

Encrypted Nonce

Status Bytes 90 00 Normal processing

Part 11. Security Mechanisms for MRTDs App G-5

Map Nonce

The nonce is mapped to an ephemeral group generator via generic mapping. The required randomly chosen ephemeral
keys are also collected in the next table.

Terminal’s Private Key 7F4EF07B 9EA82FD7 8AD689B3 8D0BC78C
F21F249D 953BC46F 4C6E1925 9C010F99

Terminal’s Public Key 7ACF3EFC 982EC455 65A4B155 129EFBC7
4650DCBF A6362D89 6FC70262 E0C2CC5E,
544552DC B6725218 799115B5 5C9BAA6D
9F6BC3A9 618E70C2 5AF71777 A9C4922D

Chip’s Private Key 498FF497 56F2DC15 87840041 839A8598
2BE7761D 14715FB0 91EFA7BC E9058560

Chip’s Public Key 824FBA91 C9CBE26B EF53A0EB E7342A3B
F178CEA9 F45DE0B7 0AA60165 1FBA3F57,
30D8C879 AAA9C9F7 3991E61B 58F4D52E
B87A0A0C 709A49DC 63719363 CCD13C54

Shared secret H 60332EF2 450B5D24 7EF6D386 8397D398
852ED6E8 CAF6FFEE F6BF85CA 57057FD5,
0840CA74 15BAF3E4 3BD414D3 5AA4608B
93A2CAF3 A4E3EA4E 82C9C13D 03EB7181

Mapped generator Ĝ 8CED63C9 1426D4F0 EB1435E7 CB1D74A4
6723A0AF 21C89634 F65A9AE8 7A9265E2,
8C879506 743F8611 AC33645C 5B985C80
B5F09A0B 83407C1B 6A4D857A E76FE522

The following APDUs are exchanged by terminal and chip to map the nonce.

T>C : 10 86 00 00 45 7C 43 81 41 04 7A CF 3E FC 98 2E C4 55 65 A4 B1 55

12 9E FB C7 46 50 DC BF A6 36 2D 89 6F C7 02 62 E0 C2 CC 5E 54 45
52 DC B6 72 52 18 79 91 15 B5 5C 9B AA 6D 9F 6B C3 A9 61 8E 70 C2
5A F7 17 77 A9 C4 92 2D 00

C>T : 7C 43 82 41 04 82 4F BA 91 C9 CB E2 6B EF 53 A0 EB E7 34 2A 3B F1
78 CE A9 F4 5D E0 B7 0A A6 01 65 1F BA 3F 57 30 D8 C8 79 AA A9 C9
F7 39 91 E6 1B 58 F4 D5 2E B8 7A 0A 0C 70 9A 49 DC 63 71 93 63 CC
D1 3C 54 90 00

App G-6 Machine Readable Travel Documents

The structure of the APDUs can be described as follows:

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 45 Length of data

Data Tag Length Value Comment

 7C 43 - Dynamic Authentication Data

 81 41 Mapping Data

 04 Uncompressed Point

 7A CF 3E FC 98 2E ...
C2 CC 5E

 x-coordinate

 54 45 52 DC B6 72 ...
C4 92 2D

 y-coordinate

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 43 Dynamic Authentication Data

 82 41 Mapping Data

 04 Uncompressed Point

 82 4F BA 91 C9 CB ...
BA 3F 57

 x-coordinate

 30 D8 C8 79 AA A9 ...
D1 3C 54

 y-coordinate

Status Bytes 90 00 Normal processing

 Perform Key Agreement

In the third step, chip and terminal perform an anonymous ECDH key agreement using the new domain parameters
determined by the ephemeral group generator of the previous step. Only the x-coordinate is required as shared secret
since the KDF uses only the first coordinate to derive the session keys.

Part 11. Security Mechanisms for MRTDs App G-7

Terminal’s Private Key A73FB703 AC1436A1 8E0CFA5A BB3F7BEC
7A070E7A 6788486B EE230C4A 22762595

Terminal’s Public Key 2DB7A64C 0355044E C9DF1905 14C625CB
A2CEA487 54887122 F3A5EF0D 5EDD301C,
3556F3B3 B186DF10 B857B58F 6A7EB80F
20BA5DC7 BE1D43D9 BF850149 FBB36462

Chip’s Private Key 107CF586 96EF6155 053340FD 633392BA
81909DF7 B9706F22 6F32086C 7AFF974A

Chip’s Public Key 9E880F84 2905B8B3 181F7AF7 CAA9F0EF
B743847F 44A306D2 D28C1D9E C65DF6DB,
7764B222 77A2EDDC 3C265A9F 018F9CB8
52E111B7 68B32690 4B59A019 3776F094

Shared Secret 28768D20 701247DA E81804C9 E780EDE5
82A9996D B4A31502 0B273319 7DB84925

The key agreement is performed as follows:

T>C : 10 86 00 00 45 7C 43 83 41 04 2D B7 A6 4C 03 55 04 4E C9 DF 19

05 14 C6 25 CB A2 CE A4 87 54 88 71 22 F3 A5 EF 0D 5E DD 30 1C
35 56 F3 B3 B1 86 DF 10 B8 57 B5 8F 6A 7E B8 0F 20 BA 5D C7 BE
1D 43 D9 BF 85 01 49 FB B3 64 62 00

C>T : 7C 43 84 41 04 9E 88 0F 84 29 05 B8 B3 18 1F 7A F7 CA A9 F0 EF
B7 43 84 7F 44 A3 06 D2 D2 8C 1D 9E C6 5D F6 DB 77 64 B2 22 77
A2 ED DC 3C 26 5A 9F 01 8F 9C B8 52 E1 11 B7 68 B3 26 90 4B 59
A0 19 37 76 F0 94 90 00

The encoding of the key agreement is examined in the following table:

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 45 Length of data

Data Tag Length Value Comment

 7C 43 - Dynamic Authentication Data

 83 41 Terminal’s Ephemeral Public Key

 04 Uncompressed Point

App G-8 Machine Readable Travel Documents

 2D B7 A6 4C 03 55 ...
DD 30 1C

 x-coordinate

 35 56 F3 B3 B1 86 ...
B3 64 62

 y-coordinate

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 43 Dynamic Authentication Data

 84 41 Chip’s Ephemeral Public Key

 04 Uncompressed Point

 9E 88 0F 84 29 05 ...
5D F6 DB

 x-coordinate

 77 64 B2 22 77 A2 ...
76 F0 94

 y-coordinate

Status Bytes 90 00 Normal processing

By means of the KDF, the AES 128 session keys KSEnc and KSMAC are derived from the shared secret. These are

KSEnc F5F0E35C 0D7161EE 6724EE51 3A0D9A7F

KSMAC FE251C78 58B356B2 4514B3BD 5F4297D1

 Mutual Authentication

The authentication tokens are derived by means of KSMAC using

Input Data for TIFD 7F494F06 0A04007F 00070202 04020286
41049E88 0F842905 B8B3181F 7AF7CAA9
F0EFB743 847F44A3 06D2D28C 1D9EC65D
F6DB7764 B22277A2 EDDC3C26 5A9F018F
9CB852E1 11B768B3 26904B59 A0193776
F094

Input Data for TIC 7F494F06 0A04007F 00070202 04020286
41042DB7 A64C0355 044EC9DF 190514C6
25CBA2CE A4875488 7122F3A5 EF0D5EDD
301C3556 F3B3B186 DF10B857 B58F6A7E
B80F20BA 5DC7BE1D 43D9BF85 0149FBB3
6462

as input. The encoding of the input data is shown below

Part 11. Security Mechanisms for MRTDs App G-9

Tag Length Value ASN.1 Type Comment

7F49 4F PUBLIC KEY Input data for TIFD

06 0A 04 00 7F 00 07 02 02
04 02 02

OBJECT
IDENTIFIER

 PACE with ECDH, generic mapping and AES
128 session keys

86 41 ELLIPTIC CURVE
POINT

 Chip’s Ephemeral Public Point

 04 Uncompressed Point

 9E 88 0F 84 29 ...
5D F6 DB

 x-coordinate

 77 64 B2 22 77 ...
76 F0 94

 y-coordinate

Tag Length Value ASN.1 Type Comment

7F49 4F PUBLIC KEY Input data for TIC

06 0A 04 00 7F 00 07 02 02
04 02 02

OBJECT
IDENTIFIER

 PACE with ECDH, generic mapping and AES
128 session keys

86 41 ELLIPTIC CURVE
POINT

 Terminal’s Ephemeral Public Point

 04 Uncompressed Point

 2D B7 A6 4C 03 ...
DD 30 1C

 x-coordinate

 35 56 F3 B3 B1 ...
B3 64 62

 y-coordinate

The computed authentication tokens are:

TIFD C2B0BD78 D94BA866

TIC 3ABB9674 BCE93C08

Finally, these tokens are exchanged and verified.

T>C : 00 86 00 00 0C 7C 0A 85 08 C2 B0 BD 78 D9 4B A8 66 00

C>T : 7C 0A 86 08 3A BB 96 74 BC E9 3C 08 90 00

App G-10 Machine Readable Travel Documents

G.2 DH BASED EXAMPLE

The second example is based on DH using the 1024-bit MODP Group with 160-bit Prime Order Subgroup specified by
[RFC 5114]. The parameters of the group are:

Prime p B10B8F96 A080E01D DE92DE5E AE5D54EC
52C99FBC FB06A3C6 9A6A9DCA 52D23B61
6073E286 75A23D18 9838EF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49B83BF
ACCBDD7D 90C4BD70 98488E9C 219A7372
4EFFD6FA E5644738 FAA31A4F F55BCCC0
A151AF5F 0DC8B4BD 45BF37DF 365C1A65
E68CFDA7 6D4DA708 DF1FB2BC 2E4A4371

Subgroup Generator g A4D1CBD5 C3FD3412 6765A442 EFB99905
F8104DD2 58AC507F D6406CFF 14266D31
266FEA1E 5C41564B 777E690F 5504F213
160217B4 B01B886A 5E91547F 9E2749F4
D7FBD7D3 B9A92EE1 909D0D22 63F80A76
A6A24C08 7A091F53 1DBF0A01 69B6A28A
D662A4D1 8E73AFA3 2D779D59 18D08BC8
858F4DCE F97C2A24 855E6EEB 22B3B2E5

Prime Order q of g F518AA87 81A8DF27 8ABA4E7D 64B7CB9D
49462353

The first section introduces the PACEInfo. Subsequently, the exchanged APDUs including all generated nonces and
ephemeral keys are listed and examined.

Diffie Hellman Parameters

The relevant information for PACE is given by the data structure PACEInfo.

PACEInfo 3012060A 04007F00 07020204 01020201 02020100

The detailed structure of PACEInfo is:

Tag Length Value ASN.1 Type Comment

30 12 SEQUENCE PACEInfo

06 0A 04 00 7F 00 07 02 02 04 01
02

OBJECT
IDENTIFIER

 OID: PACE with DH, generic mapping and
AES 128 session keys

02 01 02 INTEGER Version 2

02 01 00 INTEGER Standardized 1024-bit Group specified by
RFC 5114

Part 11. Security Mechanisms for MRTDs App G-11

Application flow of the DH-based example

To initialize PACE, the terminal sends the command MSE:AT to the chip.

T>C : 00 22 C1 A4 0F 80 0A 04 00 7F 00 07 02 02 04 01 02 83 01 01

C>T : 90 00

The encoding of the command is described in the next table.

Command

CLA 00 Plain

INS 22 Manage security environment

P1/P2 C1 A4 Set Authentication Template for mutual authentication

Lc 0F Length of data field

Data Tag Length Value Comment

 80 0A 04 00 7F 00 07 02 02 04 01
02

OID: Cryptographic mechanism: PACE with DH,
generic mapping and AES128

 83 01 01 Password: MRZ

Response

Status Bytes 90 00 Normal processing

 Encrypted Nonce

Next, the terminal queries a nonce from the chip.

Decrypted Nonce s FA5B7E3E 49753A0D B9178B7B 9BD898C8

Encrypted Nonce z 854D8DF5 827FA685 2D1A4FA7 01CDDDCA

The communication looks as follows.

T>C : 10 86 00 00 02 7C 00 00

C>T : 7C 12 80 10 85 4D 8D F5 82 7F A6 85 2D 1A 4F A7 01 CD DD CA 90 00

App G-12 Machine Readable Travel Documents

The encoding of the command APDU and the corresponding response is described in the following table.

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 02 Length of data

Data Tag Length Value Comment

 7C 00 - Absent

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 12 Dynamic Authentication Data

 80 10 85 4D 8D F5 82 7F A6
85 2D 1A 4F A7 01 CD
DD CA

Encrypted Nonce

Status Bytes 90 00 Normal processing

Map Nonce

By means of the generic mapping, the nonce is mapped to an ephemeral group generator. For that purpose, the following
ephemeral keys are randomly generated by terminal and chip.

Part 11. Security Mechanisms for MRTDs App G-13

Terminal’s Private Key 5265030F 751F4AD1 8B08AC56 5FC7AC95 2E41618D

Terminal’s Public Key 23FB3749 EA030D2A 25B278D2 A562047A
DE3F01B7 4F17A154 02CB7352 CA7D2B3E
B71C343D B13D1DEB CE9A3666 DBCFC920
B49174A6 02CB4796 5CAA73DC 702489A4
4D41DB91 4DE9613D C5E98C94 160551C0
DF86274B 9359BC04 90D01B03 AD54022D
CB4F57FA D6322497 D7A1E28D 46710F46
1AFE710F BBBC5F8B A166F431 1975EC6C

Chip’s Private Key 66DDAFEA C1609CB5 B963BB0C B3FF8B3E 047F336C

Chip’s Public Key 78879F57 225AA808 0D52ED0F C890A4B2
5336F699 AA89A2D3 A189654A F70729E6
23EA5738 B26381E4 DA19E004 706FACE7
B235C2DB F2F38748 312F3C98 C2DD4882
A41947B3 24AA1259 AC22579D B93F7085
655AF308 89DBB845 D9E6783F E42C9F24
49400306 254C8AE8 EE9DD812 A804C0B6
6E8CAFC1 4F84D825 8950A91B 44126EE6

Shared secret H 5BABEBEF 5B74E5BA 94B5C063 FDA15F1F
1CDE9487 3EE0A5D3 A2FCAB49 F258D07F
544F13CB 66658C3A FEE9E727 389BE3F6
CBBBD321 28A8C21D D6EEA3CF 7091CDDF
B08B8D00 7D40318D CCA4FFBF 51208790
FB4BD111 E5A968ED 6B6F08B2 6CA87C41
0B3CE0C3 10CE104E ABD16629 AA48620C
1279270C B0750C0D 37C57FFF E302AE7F

Mapped generator Ĝ 7C9CBFE9 8F9FBDDA 8D143506 FA7D9306
F4CB17E3 C71707AF F5E1C1A1 23702496
84D64EE3 7AF44B8D BD9D45BF 6023919C
BAA027AB 97ACC771 666C8E98 FF483301
BFA4872D EDE9034E DFACB708 14166B7F
36067682 9B826BEA 57291B5A D69FBC84
EF1E7790 32A30580 3F743417 93E86974
2D401325 B37EE856 5FFCDEE6 18342DC5

App G-14 Machine Readable Travel Documents

The following APDUs are exchanged by terminal and chip to map the nonce.

T>C : 10 86 00 00 86 7C 81 83 81 81 80 23 FB 37 49 EA 03 0D 2A 25 B2 78 D2 A5
62 04 7A DE 3F 01 B7 4F 17 A1 54 02 CB 73 52 CA 7D 2B 3E B7 1C 34 3D B1
3D 1D EB CE 9A 36 66 DB CF C9 20 B4 91 74 A6 02 CB 47 96 5C AA 73 DC 70
24 89 A4 4D 41 DB 91 4D E9 61 3D C5 E9 8C 94 16 05 51 C0 DF 86 27 4B 93
59 BC 04 90 D0 1B 03 AD 54 02 2D CB 4F 57 FA D6 32 24 97 D7 A1 E2 8D 46

71 0F 46 1A FE 71 0F BB BC 5F 8B A1 66 F4 31 19 75 EC 6C 00

C>T : 7C 81 83 82 81 80 78 87 9F 57 22 5A A8 08 0D 52 ED 0F C8 90 A4 B2 53 36
F6 99 AA 89 A2 D3 A1 89 65 4A F7 07 29 E6 23 EA 57 38 B2 63 81 E4 DA 1
9E0 04 70 6F AC E7 B2 35 C2 DB F2 F3 87 48 31 2F 3C 98 C2 DD 48 82 A4 19
47 B3 24 AA 12 59 AC 22 57 9D B9 3F 70 85 65 5A F3 08 89 DB B8 45 D9 E6
78 3F E4 2C 9F 24 49 40 03 06 25 4C 8A E8 EE 9D D8 12 A8 04 C0 B6 6E 8C

AF C1 4F 84 D8 25 89 50 A9 1B 44 12 6E E6 90 00

The structure of the APDUs can be described as follows:

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 86 Length of data

Data Tag Length Value Comment

 7C 81 83 - Dynamic Authentication Data

 81 81 80 23 FB 37 49 EA 03 ...
75 EC 6C

Mapping Data

Le 00 Expected maximal byte length of the response data field is 256

Part 11. Security Mechanisms for MRTDs App G-15

Response

Data Tag Length Value Comment

 7C 81 83 Dynamic Authentication Data

 82 81 80 ED 0F C8 90 A4 B2 ...
12 6E E6

Mapping Data

Status Bytes 90 00 Normal processing

 Perform Key Agreement

Subsequently, chip and terminal perform an anonymous DH key agreement using the new domain parameters determined
by the ephemeral group generator of the previous step.

Terminal’s Private Key 89CCD99B 0E8D3B1F 11E1296D CA68EC53 411CF2CA

Terminal’s Public Key 00907D89 E2D425A1 78AA81AF 4A7774EC
8E388C11 5CAE6703 1E85EECE 520BD911
551B9AE4 D04369F2 9A02626C 86FBC674
7CC7BC35 2645B616 1A2A42D4 4EDA80A0
8FA8D61B 76D3A154 AD8A5A51 786B0BC0
71470578 71A92221 2C5F67F4 31731722
36B7747D 1671E6D6 92A3C7D4 0A0C3C5C

E397545D 015C175E B5130551 EDBC2EE5 D4

Chip’s Private Key A5B78012 6B7C980E 9FCEA1D4 539DA1D2 7C342DFA

Chip’s Public Key 075693D9 AE941877 573E634B 6E644F8E
60AF17A0 076B8B12 3D920107 4D36152B
D8B3A213 F53820C4 2ADC79AB 5D0AEEC3
AEFB9139 4DA476BD 97B9B14D 0A65C1FC
71A0E019 CB08AF55 E1F72900 5FBA7E3F
A5DC4189 9238A250 767A6D46 DB974064
386CD456 743585F8 E5D90CC8 B4004B1F
6D866C79 CE0584E4 9687FF61 BC29AEA1

Shared Secret 6BABC7B3 A72BCD7E A385E4C6 2DB2625B
D8613B24 149E146A 629311C4 CA6698E3
8B834B6A 9E9CD718 4BA8834A FF5043D4
36950C4C 1E783236 7C10CB8C 314D40E5
990B0DF7 013E64B4 549E2270 923D06F0
8CFF6BD3 E977DDE6 ABE4C31D 55C0FA2E
465E553E 77BDF75E 3193D383 4FC26E8E
B1EE2FA1 E4FC97C1 8C3F6CFF FE2607FD

App G-16 Machine Readable Travel Documents

The key agreement is performed as follows:

T>C : 10 86 00 00 86 7C 81 83 83 81 80 90 7D 89 E2 D4 25 A1 78 AA 81 AF 4A 77
74 EC 8E 38 8C 11 5C AE 67 03 1E 85 EE CE 52 0B D9 11 55 1B 9A E4 D0 43
69 F2 9A 02 62 6C 86 FB C6 74 7C C7 BC 35 26 45 B6 16 1A 2A 42 D4 4E DA
80 A0 8F A8 D6 1B 76 D3 A1 54 AD 8A 5A 51 78 6B 0B C0 71 47 05 78 71 A9
22 21 2C 5F 67 F4 31 73 17 22 36 B7 74 7D 16 71 E6 D6 92 A3 C7 D4 0A 0C

3C 5C E3 97 54 5D 01 5C 17 5E B5 13 05 51 ED BC 2E E5 D4 00

C>T : 7C 81 83 84 81 80 07 56 93 D9 AE 94 18 77 57 3E 63 4B 6E 64 4F 8E 60 AF
17 A0 07 6B 8B 12 3D 92 01 07 4D 36 15 2B D8 B3 A2 13 F5 38 20 C4 2A DC
79 AB 5D 0A EE C3 AE FB 91 39 4D A4 76 BD 97 B9 B1 4D 0A 65 C1 FC 71 A0
E0 19 CB 08 AF 55 E1 F7 29 00 5F BA 7E 3F A5 DC 41 89 92 38 A2 50 76 7A
6D 46 DB 97 40 64 38 6C D4 56 74 35 85 F8 E5 D9 0C C8 B4 00 4B 1F 6D 86

6C 79 CE 05 84 E4 96 87 FF 61 BC 29 AE A1 90 00

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 86 Length of data

Data Tag Length Value Comment

 7C 81 83 - Dynamic Authentication Data

 83 81 80 90 7D 89 E2 D4 25 ...
2E E5 D4

Terminal’s Ephemeral Public Key

Le 00 Expected maximal byte length of the response data field is 256

Part 11. Security Mechanisms for MRTDs App G-17

Response

Data Tag Length Value Comment

 7C 81 83 Dynamic Authentication Data

 84 81 80 07 56 93 D9 AE 94 ...
29 AE A1

Chip’s Ephemeral Public Key

Status Bytes 90 00 Normal processing

The AES 128 session keys KSEnc and KSMAC are derived from the shared secret using the KDF.

KSEnc 2F7F46AD CC9E7E52 1B45D192 FAFA9126

KSMAC 805A1D27 D45A5116 F73C5446 9462B7D8

 Mutual Authentication

The authentication tokens are constructed from the following input data.

Input Data for TIFD 7F49818F 060A0400 7F000702 02040102
84818007 5693D9AE 94187757 3E634B6E
644F8E60 AF17A007 6B8B123D 9201074D
36152BD8 B3A213F5 3820C42A DC79AB5D
0AEEC3AE FB91394D A476BD97 B9B14D0A
65C1FC71 A0E019CB 08AF55E1 F729005F
BA7E3FA5 DC418992 38A25076 7A6D46DB
97406438 6CD45674 3585F8E5 D90CC8B4
004B1F6D 866C79CE 0584E496 87FF61BC

29AEA1

Input Data for TIC 7F49818F 060A0400 7F000702 02040102
84818090 7D89E2D4 25A178AA 81AF4A77
74EC8E38 8C115CAE 67031E85 EECE520B
D911551B 9AE4D043 69F29A02 626C86FB
C6747CC7 BC352645 B6161A2A 42D44EDA
80A08FA8 D61B76D3 A154AD8A 5A51786B
0BC07147 057871A9 22212C5F 67F43173
172236B7 747D1671 E6D692A3 C7D40A0C
3C5CE397 545D015C 175EB513 0551EDBC

2EE5D4

App G-18 Machine Readable Travel Documents

The encoding of the input data is shown below:

Tag Length Value ASN.1 Type Comment

7F49 81 8F PUBLIC KEY Input data for TIFD

06 0A 04 00 7F 00 07 02 02
04 01 02

OBJECT
IDENTIFIER

 PACE with DH, generic mapping and AES 128
session keys

84 81 80 07 56 93 D9 AE
... 29 AE A1

UNSIGNED
INTEGER

 Chip’s Ephemeral Public Key

Tag Length Value ASN.1 Type Comment

7F49 81 8F PUBLIC KEY Input data for TIC

06 0A 04 00 7F 00 07 02 02
04 01 02

OBJECT
IDENTIFIER

 PACE with DH, generic mapping and AES 128
session keys

84 81 80 90 7D 89 E2 D4
... 2E E5 D4

UNSIGNED
INTEGER

 Terminal’s Ephemeral Public Key

The computed authentication tokens are:

TIFD B46DD9BD 4D98381F

TIC 917F37B5 C0E6D8D1

Finally, these tokens are exchanged and verified.

T>C : 00 86 00 00 0C 7C 0A 85 08 B4 6D D9 BD 4D 98 38 1F 00

C>T : 7C 1B 86 08 91 7F 37 B5 C0 E6 D8 D1 87 0F 44 45 54 45 53 54 43 56 43 41
30 30 30 30 33

Part 11. Security Mechanisms for MRTDs App G-19

Command

CLA 00 Plain

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 0C Length of data

Data Tag Length Value Comment

 7C 0A - Dynamic Authentication Data

 85 08 B4 6D D9 BD 4D 98 38 1F Terminal’s Authentication Token

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 0A Dynamic Authentication Data

 86 08 91 7F 37 B5 C0 E6 D8 D1 Chip’s Authentication Token

Status Bytes 90 00 Normal processing

— — — — — — — —

 App H-1

Appendix H to Part 11

WORKED EXAMPLE: PACE – INTEGRATED MAPPING
(INFORMATIVE)

This Appendix provides two examples for the PACE protocol with Integrated Mapping. The first one is based on Elliptic
Curve Diffie-Hellman (ECDH) and the second one on Diffie-Hellman (DH). The MRZ-derived key K from the previous
Example is used.

H.1 ECDH BASED EXAMPLE

This example is based on the BrainpoolP256r1 elliptic curve. The block cipher used in this example is AES-128. For
reminder, the curve parameters are the following:

Prime p A9FB57DB A1EEA9BC 3E660A90 9D838D72
6E3BF623 D5262028 2013481D 1F6E5377

Parameter a 7D5A0975 FC2C3057 EEF67530 417AFFE7
FB8055C1 26DC5C6C E94A4B44 F330B5D9

Parameter b 26DC5C6C E94A4B44 F330B5D9 BBD77CBF
95841629 5CF7E1CE 6BCCDC18 FF8C07B6

x-coordinate of the group
generator G

8BD2AEB9 CB7E57CB 2C4B482F FC81B7AF
B9DE27E1 E3BD23C2 3A4453BD 9ACE3262

y-coordinate of the group
generator G

547EF835 C3DAC4FD 97F8461A 14611DC9
C2774513 2DED8E54 5C1D54C7 2F046997

Group order n A9FB57DB A1EEA9BC 3E660A90 9D838D71
8C397AA3 B561A6F7 901E0E82 974856A7

Cofactor f 01

The encryption key is the following:

Kπ 591468CD A83D6521 9CCCB856 0233600F

App H-2 Machine Readable Travel Documents

Encrypted Nonce

A nonce s is randomly chosen by the chip and encrypted using Kπ. The encrypted nonce z is then sent to the terminal.

Decrypted Nonce s 2923BE84 E16CD6AE 529049F1 F1BBE9EB

Encrypted Nonce z 143DC40C 08C8E891 FBED7DED B92B64AD

Map Nonce

A nonce t is randomly chosen and sent in clear. t and s are then used to compute the Integrated Mapping. First, the
pseudo-random function Rp, derived from AES, is applied to s and t. Then, the point encoding fG is used on the result to
compute the Mapped Generator Ĝ=fG(Rp(s,t)).

Nonce t 5DD4CBFC 96F5453B 130D890A 1CDBAE32

Pseudo-random R(s,t) E4447E2D FB3586BA C05DDB00 156B57FB
B2179A39 49294C97 25418980 0C517BAA
8DA0FF39 7ED8C445 D3E421E4 FEB57322

Rp(s,t) A2F8FF2D F50E52C6 599F386A DCB595D2
29F6A167 ADE2BE5F 2C3296AD D5B7430E

x-coordinate of the
Mapped Generator Ĝ

8E82D315 59ED0FDE 92A4D049 8ADD3C23
BABA94FB 77691E31 E90AEA77 FB17D427

y-coordinate of the
Mapped Generator Ĝ

4C1AE14B D0C3DBAC 0C871B7F 36081693
64437CA3 0AC243A0 89D3F266 C1E60FAD

Perform Key Agreement

The chip and the terminal perform an anonymous Diffie-Hellman key agreement using their secret keys and the mapped
generator Ĝ. The shared secret K is the x-coordinate of agreement.

Chip’s private key SKIC 107CF586 96EF6155 053340FD 633392BA
81909DF7 B9706F22 6F32086C 7AFF974A

Chip’s public key PKIC 67F78E5F 7F768608 2B293E8D 087E0569
16D0F74B C01A5F89 57D0DE45 691E51E8
932B69A9 62B52A09 85AD2C0A 271EE6A1
3A8ADDDC D1A3A994 B9DED257 F4D22753

Terminal’s private key SKIFD A73FB703 AC1436A1 8E0CFA5A BB3F7BEC
7A070E7A 6788486B EE230C4A 22762595

Terminal’s public key PKIFD 89CBA23F FE96AA18 D824627C 3E934E54
A9FD0B87 A95D1471 DC1C0ABF DCD640D4
6755DE9B 7B778280 B6BEBD57 439ADFEB
0E21FD4E D6DF4257 8C13418A 59B34C37

Part 11. Security Mechanisms for MRTDs App H-3

Shared secret K 4F150FDE 1D4F0E38 E95017B8 91BAE171
33A0DF45 B0D3E18B 60BA7BEA FDC2C713

Using the specifications from [1], the session keys KEnc and KMAC are derived from K using the hash function SHA-1:
KEnc=SHA-1(K||0x00000001) and KMAC=SHA-1(K||0x00000002). Then, only the first 16 octets of the digest are used with
the following result:

KEnc 0D3FEB33 251A6370 893D62AE 8DAAF51B

KMAC B01E89E3 D9E8719E 586B50B4 A7506E0B

Mutual Authentication

The authentication tokens are computed using a CMAC on the following inputs with the key KMAC.

Input data for TIC 7F494F06 0A04007F 00070202 04040286
410489CB A23FFE96 AA18D824 627C3E93
4E54A9FD 0B87A95D 1471DC1C 0ABFDCD6
40D46755 DE9B7B77 8280B6BE BD57439A
DFEB0E21 FD4ED6DF 42578C13 418A59B3

4C37

Input data for TIFD 7F494F06 0A04007F 00070202 04040286
410467F7 8E5F7F76 86082B29 3E8D087E
056916D0 F74BC01A 5F8957D0 DE45691E
51E8932B 69A962B5 2A0985AD 2C0A271E
E6A13A8A DDDCD1A3 A994B9DE D257F4D2

2753

The corresponding authentication tokens are:

TIC 75D4D96E 8D5B0308

TIFD 450F02B8 6F6A0909

App H-4 Machine Readable Travel Documents

H.2 DH BASED EXAMPLE

This example is based on the 1 024-bit MODP Group with 160-bit Prime Order Subgroup. The block cipher used in this
example is AES-128.

The group parameters are:

Prime p B10B8F96 A080E01D DE92DE5E AE5D54EC
52C99FBC FB06A3C6 9A6A9DCA 52D23B61
6073E286 75A23D18 9838EF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49B83BF
ACCBDD7D 90C4BD70 98488E9C 219A7372
4EFFD6FA E5644738 FAA31A4F F55BCCC0
A151AF5F 0DC8B4BD 45BF37DF 365C1A65
E68CFDA7 6D4DA708 DF1FB2BC 2E4A4371

Subgroup generator g A4D1CBD5 C3FD3412 6765A442 EFB99905
F8104DD2 58AC507F D6406CFF 14266D31
266FEA1E 5C41564B 777E690F 5504F213
160217B4 B01B886A 5E91547F 9E2749F4
D7FBD7D3 B9A92EE1 909D0D22 63F80A76
A6A24C08 7A091F53 1DBF0A01 69B6A28A
D662A4D1 8E73AFA3 2D779D59 18D08BC8
858F4DCE F97C2A24 855E6EEB 22B3B2E5

Prime order q of g F518AA87 81A8DF27 8ABA4E7D 64B7CB9D
49462353

The following encryption key is used:

Kπ 591468CD A83D6521 9CCCB856 0233600F

Encrypted Nonce

A nonce s is randomly chosen by the chip and encrypted using Kπ. The encrypted nonce z is then sent to the terminal.

Decrypted Nonce s FA5B7E3E 49753A0D B9178B7B 9BD898C8

Encrypted Nonce z 9ABB8864 CA0FF155 1E620D1E F4E13510

Part 11. Security Mechanisms for MRTDs App H-5

Map Nonce

A nonce t is randomly chosen and sent in clear. t and s are then used to compute the Integrated Mapping. First, the
pseudo-random function Rp, derived from AES, is applied to s and t. Then, the point encoding fg is used on the result.

Nonce t B3A6DB3C 870C3E99 245E0D1C 06B747DE

Pseudo-random R(s,t) EAB98D13 E0905295 2AA72990 7C3C9461
84DEA0FE 74AD2B3A F506F0A8 3018459C
38099CD1 F7FF4EA0 A078DB1F AC136550
5E3DC855 00EF95E2 0B4EEF2E 88489233
BEE0546B 472F994B 618D1687 02406791
DEEF3CB4 810932EC 278F3533 FDB860EB
4835C36F A4F1BF3F A0B828A7 18C96BDE
88FBA38A 3E6C35AA A1095925 1EB5FC71
0FC18725 8995944C 0F926E24 9373F485

Rp(s,t) A0C7C50C 002061A5 1CC87D25 4EF38068
607417B6 EE1B3647 3CFB800D 2D2E5FA2
B6980F01 105D24FA B22ACD1B FA5C8A4C
093ECDFA FE6D7125 D42A843E 33860383
5CF19AFA FF75EFE2 1DC5F6AA 1F9AE46C
25087E73 68166FB0 8C1E4627 AFED7D93
570417B7 90FF7F74 7E57F432 B04E1236
819E0DFE F5B6E77C A4999925 328182D2

Mapped Generator ĝ= fg(Rp(s,t)) 1D7D767F 11E333BC D6DBAEF4 0E799E7A
926B9697 3550656F F3C83072 6D118D61
C276CDCC 61D475CF 03A98E0C 0E79CAEB
A5BE2557 8BD4551D 0B109032 36F0B0F9
76852FA7 8EEA14EA 0ACA87D1 E91F688F
E0DFF897 BBE35A47 2621D343 564B262F
34223AE8 FC59B664 BFEDFA2B FE7516CA
5510A6BB B633D517 EC25D4E0 BBAA16C2

Perform Key Agreement

The chip and the terminal perform an anonymous Diffie-Hellman key agreement using their secret keys and the mapped
generator ĝ.

Chip’s private key SKIC 020F018C 7284B047 FA7721A3 37EFB7AC
B1440BB3 0C5252BD 41C97C30 C994BB78
E9F0C5B3 2744D840 17D21FFA 6878396A
6469CA28 3EF5C000 DAF7D261 A39AB886
0ED4610A B5343390 897AAB5A 7787E4FA
EFA0649C 6A94FDF8 2D991E8E 3FC332F5
142729E7 040A3F7D 5A4D3CD7 5CBEE1F0
43C1CAD2 DD484FEB 4ED22B59 7D36688E

App H-6 Machine Readable Travel Documents

Chip’s public key PKIC 928D9A0F 9DBA450F 13FC859C 6F290D1D
36E42431 138A4378 500BEB4E 0401854C
FF111F71 CB6DC1D0 335807A1 1388CC8E
AA87B079 07AAD9FB A6B169AF 6D8C26AF
8DDDC39A DC3AD2E3 FF882B84 D23E9768
E95A80E4 746FB07A 9767679F E92133B4
D379935C 771BD7FB ED6C7BB4 B1708B27
5EA75679 524CDC9C 6A91370C C662A2F3

Terminal’s private key SKIFD 4BD0E547 40F9A028 E6A515BF DAF96784
8C4F5F5F FF65AA09 15947FFD 1A0DF2FA
6981271B C905F355 1457B7E0 3AC3B806
6DE4AA40 6C1171FB 43DD939C 4BA16175
103BA3DE E16419AA 248118F9 0CC36A3D
6F4C3736 52E0C3CC E7F0F1D0 C5425B36
00F0F0D6 A67F004C 8BBA33F2 B4733C72
52445C1D FC4F1107 203F71D2 EFB28161

Terminal’s public key PKIFD 0F0CC629 45A80292 51FB7EF3 C094E12E
C68E4EF0 7F27CB9D 9CD04C5C 4250FAE0
E4F8A951 557E929A EB48E5C6 DD47F2F5
CD7C351A 9BD2CD72 2C07EDE1 66770F08
FFCB3702 62CF308D D7B07F2E 0DA9CAAA
1492344C 85290691 9538C98A 4BA4187E
76CE9D87 832386D3 19CE2E04 3C3343AE
AE6EDBA1 A9894DC5 094D22F7 FE1351D5

Shared secret K 419410D6 C0A17A4C 07C54872 CE1CBCEB
0A2705C1 A434C8A8 9A4CFE41 F1D78124
CA7EC52B DE7615E5 345E48AB 1ABB6E7D
1D59A57F 3174084D 3CA45703 97C1F622
28BDFDB2 DA191EA2 239E2C06 0DBE3BBC
23C2FCD0 AF12E0F9 E0B99FCF 91FF1959
011D5798 B2FCBC1F 14FCC24E 441F4C8F
9B08D977 E9498560 E63E7FFA B3134EA7

The session keys KEnc and KMAC are derived from K using the hash function SHA-1: KEnc=SHA-1(K||0x00000001) and
KMAC=SHA-1(K||0x00000002). Then, only the first 16 octets of the digest are used with the following result:

KEnc 01AFC10C F87BE36D 8179E873 70171F07

KMAC 23F0FBD0 5FD6C7B8 B88F4C83 09669061

Part 11. Security Mechanisms for MRTDs App H-7

Mutual Authentication

The authentication tokens are computed using a CMAC on the following inputs with the key KMAC.

Input data for TIC 7F49818F 060A0400 7F000702 02040302
8481800F 0CC62945 A8029251 FB7EF3C0
94E12EC6 8E4EF07F 27CB9D9C D04C5C42
50FAE0E4 F8A95155 7E929AEB 48E5C6DD
47F2F5CD 7C351A9B D2CD722C 07EDE166
770F08FF CB370262 CF308DD7 B07F2E0D
A9CAAA14 92344C85 29069195 38C98A4B
A4187E76 CE9D8783 2386D319 CE2E043C
3343AEAE 6EDBA1A9 894DC509 4D22F7FE

1351D5

Input data for TIFD 7F49818F 060A0400 7F000702 02040302
84818092 8D9A0F9D BA450F13 FC859C6F
290D1D36 E4243113 8A437850 0BEB4E04
01854CFF 111F71CB 6DC1D033 5807A113
88CC8EAA 87B07907 AAD9FBA6 B169AF6D
8C26AF8D DDC39ADC 3AD2E3FF 882B84D2
3E9768E9 5A80E474 6FB07A97 67679FE9
2133B4D3 79935C77 1BD7FBED 6C7BB4B1
708B275E A7567952 4CDC9C6A 91370CC6

62A2F3

The corresponding authentication tokens are:

TIC C2F04230 187E1525

TIFD 55D61977 CBF5307E

— — — — — — — —

 App I-1

Appendix I to Part 11

WORKED EXAMPLE: PACE – PACE CA MAPPING
(INFORMATIVE)

This Appendix provides an example for the PACE protocol with Chip Authentication Mapping based on Elliptic Curve Diffie-
Hellman (ECDH). All numbers contained in the tables are noted hexadecimal.

The MRZ is used as password. The relevant data fields of the MRZ including the check digits are:

 • Document Number: C11T002JM4;

 • Date of Birth: 9608122;

 • Date of Expiry: 2310314.

Hence, the encoding K of the MRZ and the derived encryption key Kπ are

K 894D03F1 48C6265E 89845B21 8856EA34 D00EF8E8

Kπ 4E6F6FBF 7BE748B9 32C7B741 61BBA9DF

I.1 ECDH BASED EXAMPLE

This example is based on ECDH applying the standardized BrainpoolP256r1 domain parameters (see [RFC 5639]).

The first section introduces the corresponding PACEInfo. Subsequently, the exchanged APDUs including all generated
nonces and ephemeral keys are listed and examined.

Elliptic Curve Parameters

Using standardized domain parameters, all information required to perform PACE is given by the data structure
PACEInfo. In particular, no PACEDomainParameterInfo is needed.

PACEInfo 3012060A 04007F00 07020204 06020201 0202010D

The detailed structure of PACEInfo is itemized in the following table.

App I-2 Machine Readable Travel Documents

Tag Length Value ASN.1 Type Comment

30 12 SEQUENCE PACEInfo

06 0A 04 00 7F 00 07 02 02 04 06
02

OBJECT
IDENTIFIER

 PACE with ECDH, Chip Authentication
Mapping and AES 128 session keys

02 01 02 INTEGER Version 2

02 01 0D INTEGER Brainpool P256r1 Standardized Domain
Parameters

For convenience, an ASN.1 encoding of the BrainpoolP256r1domain parameters is given below.

Tag Length Value ASN.1 Type Comment

30 81 EC SEQUENCE Domain parameter

06 07 2A 86 48 CE 3D 02 01 OBJECT
IDENTIFIER

 Algorithm id-ecPublicKey

30 81 E0 SEQUENCE Domain Parameter

02 01 01 INTEGER Version

30 2C SEQUENCE Underlying field

06 07 2A 86 48 CE 3D 01 01 OBJECT
IDENTIFIER

 Prime field

02 21 00 A9 FB 57 DB A1 EE A9 BC
3E 66 0A 90 9D 83 8D 72 6E 3B
F6 23 D5 26 20 28 20 13 48 1D
1F 6E 53 77

INTEGER Prime p

30 44 SEQUENCE Curve equation

04 20 7D 5A 09 75 FC 2C 30 57 EE F6
75 30 41 7A FF E7 FB 80 55 C1
26 DC 5C 6C E9 4A 4B 44 F3 30
B5 D9

OCTET STRING Parameter a

04 20 26 DC 5C 6C E9 4A 4B 44 F3 30
B5 D9 BB D7 7C BF 95 84 16 29
5C F7 E1 CE 6B CC DC 18 FF
8C 07 B6

OCTET STRING Parameter b

Part 11. Security Mechanisms for MRTDs App I-3

Tag Length Value ASN.1 Type Comment

04 41 OCTET STRING Group generator G

 04 - Uncompressed point

 8B D2 AE B9 CB 7E 57 CB 2C
4B 48 2F FC 81 B7 AF B9 DE 27
E1 E3 BD 23 C2 3A 44 53 BD 9A
CE 32 62

- x-coordinate

 54 7E F8 35 C3 DA C4 FD 97 F8
46 1A 14 61 1D C9 C2 77 45 13
2D ED 8E 54 5C 1D 54 C7 2F 04
69 97

- y-coordinate

02 21 00 A9 FB 57 DB A1 EE A9 BC
3E 66 0A 90 9D 83 8D 71 8C 39
7A A3 B5 61 A6 F7 90 1E 0E 82
97 48 56 A7

INTEGER Group order n

02 01 01 INTEGER Cofactor f

Application flow of the ECDH-based example

To initialize PACE, the terminal sends the command MSE:AT to the chip.

T>C : 00 22 C1 A4 0F 80 0A 04 00 7F 00 07 02 02 04 06 02 83 01 01

C>T : 90 00

Here, T>C is an abbreviation for an APDU sent from terminal to chip while C>T denotes the corresponding response sent
by the chip to the terminal. The encoding of the command is explained in the next table.

Command

CLA 00 Plain

INS 22 Manage security environment

P1/P2 C1 A4 Set Authentication Template for mutual authentication

Lc 0F Length of data field

Data Tag Length Value Comment

 80 0A 04 00 7F 00 07 02 02 04 06
02

Cryptographic mechanism: PACE with ECDH,
Chip Authentication Mapping and AES128
session keys

 83 01 01 Password: MRZ

App I-4 Machine Readable Travel Documents

Response

Status Bytes 90 00 Normal processing

Encrypted Nonce

Next, the chip randomly generates the nonce s and encrypts it by means of Kπ .

Decrypted Nonce s 658B860B C94DF6F0 44FCE6D5 C82CF8E5

Encrypted Nonce z CB60E8E0 D85B76A9 BD304747 C2AD42E2

The encrypted nonce is queried by the terminal.

T>C : 10 86 00 00 02 7C 00 00

C>T : 7C 12 80 10 CB 60 E8 E0 D8 5B 76 A9 BD 30 47 47 C2 AD 42 E2 90 00

The encoding of the command APDU and the corresponding response can be found in the following table.

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 02 Length of data

Data Tag Length Value Comment

 7C 00 - Absent

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 12 Dynamic Authentication Data

 80 10 CB60E8E0 D85B76A9
BD304747 C2AD42E2

Encrypted Nonce

Status Bytes 90 00 Normal processing

Part 11. Security Mechanisms for MRTDs App I-5

Map Nonce

The nonce is mapped to an ephemeral group generator via generic mapping. The required randomly chosen ephemeral
keys are also collected in the next table.

Terminal’s Private Key 5D8BB87B D74D985A 4B7D4325 B9F7B976
FE835122 77340079 8914AA22 738135CC

Terminal’s Public Key 7F1D410A DB7DDB3B 84BF1030 800981A9
105D7457 B4A3ADE0 02384F30 86C67EDE
1AB88910 4A27DB6D 842B0190 20FBF3CE
ACB0DC62 7F7BDCAC 29969E19 D0E553C1

Chip’s Private Key 9E56A6B5 9C95D06E CE5CD10F 983BB2F4
F1943528 E577F238 81D89D8C 3BBEE0AA

Chip’s Public Key A234236A A9B9621E 8EFB73B5 245C0E09
D2576E52 77183C12 08BDD552 80CAE8B3
04F36571 3A356E65 A451E165 ECC9AC0A
C46E3771 342C8FE5 AEDD0926 85338E23

Shared secret H 2C1DCC17 73346492 C6636A36 EE4B965E
292E9AAE 7EE37736 EF58B9D0 A043F348
403A8CF3 3CA7DC0D 9DF61D08 89CE2442
4FF97C1A AD48A5CA 2A554B07 1EF7638D

Mapped generator Ĝ 89F0B5EA BF3BE293 C75903A3 98613192
5C9F5B51 5CA95AF4 85DC7E88 6F03245D
44BEFB2D D3A0DBD7 1CB5E618 971CF474
7F12B79E 548379A4 0E45963B AAF3E829

The following APDUs are exchanged by terminal and chip to map the nonce.

T>C : 10 86 00 00 45 7C 43 81 41 04 7F 1D 41 0A DB 7D

DB 3B 84 BF 10 30 80 09 81 A9 10 5D 74 57 B4 A3
AD E0 02 38 4F 30 86 C6 7E DE 1A B8 89 10 4A 27
DB 6D 84 2B 01 90 20 FB F3 CE AC B0 DC 62 7F 7B
DC AC 29 96 9E 19 D0 E5 53 C1 00

C>T : 7C 43 82 41 04 A2 34 23 6A A9 B9 62 1E 8E FB 73
B5 24 5C 0E 09 D2 57 6E 52 77 18 3C 12 08 BD D5
52 80 CA E8 B3 04 F3 65 71 3A 35 6E 65 A4 51 E1
65 EC C9 AC 0A C4 6E 37 71 34 2C 8F E5 AE DD 09
26 85 33 8E 23 90 00

App I-6 Machine Readable Travel Documents

The structure of the APDUs can be described as follows:

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 45 Length of data

Data Tag Length Value Comment

 7C 43 - Dynamic Authentication Data

 81 41 Mapping Data

 04 Uncompressed Point

 7F 1D 41 0A ...
86 C6 7E DE

 x-coordinate

 1A B8 89 10...
D0 E5 53 C1

 y-coordinate

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 43 Dynamic Authentication Data

 82 41 Mapping Data

 04 Uncompressed Point

 A2 34 23 6A ...
80 CA E8 B3

 x-coordinate

 04 F3 65 71...
85 33 8E 23

 y-coordinate

Status Bytes 90 00 Normal processing

 Perform Key Agreement

In the third step, chip and terminal perform an anonymous ECDH key agreement using the new domain parameters
determined by the ephemeral group generator of the previous step. Only the x-coordinate is required as shared secret
since the KDF uses only the first coordinate to derive the session keys.

Part 11. Security Mechanisms for MRTDs App I-7

Terminal’s Private Key 76ECFDAA 9841C323 A3F5FC5E 88B88DB3
EFF7E35E BF57A7E6 946CB630 006C2120

Terminal’s Public Key 446C9340 84D9DAB8 63944F21 9520076C
29EE3F7A E6722B11 FF319EC1 C7728F95
5483400B FF60BF0C 59292700 09277DC2
A515E125 75010AD9 BA916CF1 BF86FEFC

Chip’s Private Key CD626EF3 C256E235 FE8912CA C28279E6
26008EDA 6B3A05C4 CF862A3B DAB79E78

Chip’s Public Key 02AD566F 3C6EC7F9 324509AD 50A51FA5
2030782A 4968FCFE DF737DAE A9933331
11C3B9B4 C2287789 BD137E7F 8AA882E2
A3C633CC D6ECC2C6 3C57AD40 1A09C2E1

Shared Secret 67950559 D0C06B4D 4B86972D 14460837
461087F8 419FDBC3 6AAF6CEA AC462832

The key agreement is performed as follows:

T>C : 10 86 00 00 45 7C 43 83 41 04 44 6C 93 40 84 D9

DA B8 63 94 4F 21 95 20 07 6C 29 EE 3F 7A E6 72
2B 11 FF 31 9E C1 C7 72 8F 95 54 83 40 0B FF 60
BF 0C 59 29 27 00 09 27 7D C2 A5 15 E1 25 75 01
0A D9 BA 91 6C F1 BF 86 FE FC 00

C>T : 7C 43 84 41 04 02 AD 56 6F 3C 6E C7 F9 32 45 09
AD 50 A5 1F A5 20 30 78 2A 49 68 FC FE DF 73 7D
AE A9 93 33 31 11 C3 B9 B4 C2 28 77 89 BD 13 7E
7F 8A A8 82 E2 A3 C6 33 CC D6 EC C2 C6 3C 57 AD
40 1A 09 C2 E1 90 00

The encoding of the key agreement is examined in the following table:

Command

CLA 10 Command chaining

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 45 Length of data

Data Tag Length Value Comment

 7C 43 - Dynamic Authentication Data

 83 41 Terminal’s Ephemeral Public Key

 04 Uncompressed Point

App I-8 Machine Readable Travel Documents

 44 6C 93 40 ...
C7 72 8F 95

 x-coordinate

 54 83 40 0B ...
BF 86 FE FC

 y-coordinate

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 43 Dynamic Authentication Data

 84 41 Chip’s Ephemeral Public Key

 04 Uncompressed Point

 02 AD 56 6F ...
A9 93 33 31

 x-coordinate

 11 C3 B9 B4 ...
1A 09 C2 E1

 y-coordinate

Status Bytes 90 00 Normal processing

By means of the KDF, the AES 128 session keys KSEnc and KSMAC are derived from the shared secret. These are

KSEnc 0A9DA4DB 03BDDE39 FC5202BC 44B2E89E

KSMAC 4B1C0649 1ED5140C A2B537D3 44C6C0B1

 Mutual Authentication

The authentication tokens are derived by means of KSMAC using

Input Data for TIFD 7F494F06 0A04007F 00070202 04060286
410402AD 566F3C6E C7F93245 09AD50A5
1FA52030 782A4968 FCFEDF73 7DAEA993
333111C3 B9B4C228 7789BD13 7E7F8AA8
82E2A3C6 33CCD6EC C2C63C57 AD401A09
C2E1

Input Data for TIC 7F494F06 0A04007F 00070202 04060286
4104446C 934084D9 DAB86394 4F219520
076C29EE 3F7AE672 2B11FF31 9EC1C772
8F955483 400BFF60 BF0C5929 27000927
7DC2A515 E1257501 0AD9BA91 6CF1BF86
FEFC

as input. The encoding of the input data is shown below.

Part 11. Security Mechanisms for MRTDs App I-9

Tag Length Value ASN.1 Type Comment

7F49 4F PUBLIC KEY Input data for TIFD

06 0A 04 00 7F 00 07 02 02
04 06 02

OBJECT
IDENTIFIER

 PACE with ECDH, Chip Authentication
Mapping and AES 128 session keys

86 41 ELLIPTIC CURVE
POINT

 Chip’s Ephemeral Public Point

 04 Uncompressed Point

 02 AD 56 6F...
A9 93 33 31

 x-coordinate

 11 C3 B9 B4 ...
1A 09 C2 E1

 y-coordinate

Tag Length Value ASN.1 Type Comment

7F49 4F PUBLIC KEY Input data for TIC

06 0A 04 00 7F 00 07 02 02
04 06 02

OBJECT
IDENTIFIER

 PACE with ECDH, Chip Authentication
Mapping and AES 128 session keys

86 41 ELLIPTIC CURVE
POINT

 Terminal’s Ephemeral Public Point

 04 Uncompressed Point

 44 6C 93 40 ...
C7 72 8F 95

 x-coordinate

 54 83 40 0B ...
BF 86 FE FC

 y-coordinate

The computed authentication tokens are:

TIFD E86BD060 18A1CD3B

TIC 8596CF05 5C67C1A3

Finally, these tokens are exchanged and verified.

T>C : 00 86 00 00 0C 7C 0A 85 08 E8 6B D0 60 18 A1 CD
3B 00

C>T : 7C 3C 86 08 85 96 CF 05 5C 67 C1 A3 8A 30 1E EA
96 4D AA E3 72 AC 99 0E 3E FD E6 33 33 53 BF C8
9A 67 04 D9 3D A8 79 8C F7 7F 5B 7A 54 BD 10 CB
A3 72 B4 2B E0 B9 B5 F2 8A A8 DE 2F 4F 92 90 00

App I-10 Machine Readable Travel Documents

The encoding of the mutual authentication is examined in the following table:

Command

CLA 00 No command chaining (last command in chain)

INS 86 GENERAL AUTHENTICATE

P1/P2 00 00 Keys and protocol implicitly known

Lc 0C Length of data

Data Tag Length Value Comment

 7C 0A - Dynamic Authentication Data

 85 08 Terminal’s Authentication Token

 E8 6B D0 60 18 A1 CD 3B TIFD

Le 00 Expected maximal byte length of the response data field is 256

Response

Data Tag Length Value Comment

 7C 3C Dynamic Authentication Data

 86 08 Chip’s Authentication Token

 85 96 CF 05 5C 67 C1 A3 TIC

 8A 30 x-coordinate

 1E EA 96 4D …
DE 2F 4F 92

 Encrypted Chip Authentication Data

Status Bytes 90 00 Normal processing

Chip Authentication

Get ChipAuthenticationPublicKeyInfo from EF.CardSecurity

ChipAuthenticationPublicKeyInfo 30620609 04007F00 07020201 02305230
0C060704 007F0007 01020201 0D034200
04187270 9494399E 7470A643 1BE25E83
EEE24FEA 568C2ED2 8DB48E05 DB3A610D
C884D256 A40E35EF CB59BF67 53D3A489
D28C7A4D 973C2DA1 38A6E7A4 A08F68E1
6F02010D

Part 11. Security Mechanisms for MRTDs App I-11

The detailed structure of ChipAuthenticationPublicKeyInfo is itemized in the following table.

Tag Length Value ASN.1 Type Comment

30 62 SEQUENCE ChipAuthenticationPublicKeyInfo

06 09 04 00 7F 00 07 02 02 01 02 OBJECT
IDENTIFIER

 id-PK-ECDH

30 52 SEQUENCE SubjectPublicKeyInfo

30 0C SEQUENCE Brainpool P256r1 Standardized Domain
Parameters

06 07 04 00 7F 00 07 01 02 OBJECT
IDENTIFIER

 standardizedDomainParameters

02 01 0D INTEGER Brainpool256r1

03 42 00 04 18 72 70 …
8F 68 E1 6F

BIT STRING CA Public Key

02 01 0D INTEGER keyID 13

For Chip Authentication the following data is used:

Encrypted Chip Authentication Data 1EEA964D AAE372AC 990E3EFD E6333353
BFC89A67 04D93DA8 798CF77F 5B7A54BD
10CBA372 B42BE0B9 B5F28AA8 DE2F4F92

Decrypted Chip Authentication Data 85DC3FA9 3D0952BF A82F5FD1 89EE75BD
82F11D1F 0B8ED4BF 5319AC9B 53C426B3

IV for De-/Encryption of CA Data
IV = E(KSENC, -1) F6A3B75A1 E933941 DD7A13E2 520779DF

Chip’s Public Key from GENERAL
AUTHENTICATE Mapping Nonce
PKMAP,IC

A234236A A9B9621E 8EFB73B5 245C0E09
D2576E52 77183C12 08BDD552 80CAE8B3
04F36571 3A356E65 A451E165 ECC9AC0A
C46E3771 342C8FE5 AEDD0926 85338E23

Chip’s Public CA Key from
ChipAuthenticationPublicKeyInfo
PKIC

18727094 94399E74 70A6431B E25E83EE
E24FEA56 8C2ED28D B48E05DB 3A610DC8
84D256A4 0E35EFCB 59BF6753 D3A489D2
8C7A4D97 3C2DA138 A6E7A4A0 8F68E16F

Terminal verifies that PKMAP,IC = KA(CAIC, PKIC, DIC).

— — — — — — — —

 App J-1

Appendix J to Part 11

INSPECTION PROCEDURES (INFORMATIVE)

J.1 INSPECTION PROCEDURE FOR eMRTD APPLICATION

This section describes an inspection procedure which contains only an eMRTD Application (“LDS1-documents”).

 1. Gain access to the contactless IC (see Section 4.2)

 • If access to the IC is protected, PACE or BAC can be used in this step, although it is recommended

to use PACE for security reasons. Beginning 1/1/2018 eMRTDs may support PACE only.

 • If supported by IC and terminal, PACE-CAM should be used for performance reasons.

 • The IC grants access to less sensitive data in the eMRTD Application and to EF.CardSecurity in

the Master File, if present.

 2. Start authentication of data

 • Read the Document Security Object and verify the signature, including chain verification of the

Document Signer Certificate.

 3. Authentication of the chip

 • Depending on support by the IC, perform Chip Authentication or Active Authentication. Support of

Active Authentication is indicated by the presence of EF.DG15 in the eMRTD Application, support
for Chip Authentication by the presence of corresponding SecurityInfos in EF.DG14.

 • This step can also be performed as part of step 1, if PACE with Chip Authentication Mapping is

used.

 • Authentication is only complete in combination with authentication of the file containing the public

key (EF.CardSecurity, EF.DG14 or EF.DG15) used for this step.

 4. Additional access control

 • Performing Terminal Authentication is necessary, if the eMRTD is configured to require this for

access to sensitive data, i.e. EF.DG3 and/or EF.DG4.

 5. Read data

 • Reading data can be started as soon as the necessary access rights are granted, e.g. less sensitive

data can be read after step 1.

 • Data must not be considered genuine without authentication of the read data (step 2).

App J-2 Machine Readable Travel Documents

J.2 INSPECTION PROCEDURE FOR MULTI-APPLICATION eMRTDS

This section describes an inspection procedure designed for eMRTDs containing one or more applications besides the
eMRTD Application (“LDS2-documents”). This procedure can also be used to access the eMRTD Application only.

 1. Gain access to the contactless IC (see Section 4.2)

 • In this setting, only PACE is available to gain access to the IC.

 • If supported by IC and terminal, PACE-CAM should be used for performance reasons.

 • The IC grants access to less sensitive data in the eMRTD Application and to EF.CardSecurity in

the Master File.

 2. Check presence of EF.CardSecurity

 • If EF.CardSecurity is not present, the eMRTD does not support authentication in the Master File

(implying that the IC only contains an eMRTD Application). In this case, select the eMRTD
Application and continue with step 2 of the procedure in Section J.1 of this appendix.

 3. Start authentication of data

 • Read EF.CardSecurity and verify the signature, including chain verification of the Document Signer

Certificate.

 • Data from the eMRTD Application are protected via the Document Security Object, which must be

verified when data from this application is read. Data from other applications are protected by
signatures of the data, which also must be verified upon reading these data.

 4. Authentication of the chip

 • Perform Chip Authentication in the Master File. If the necessary information are not contained in

the SecurityInfos in EF.CardSecurity, the IC does not support authentication in the Master File.
In this case select the eMRTD Application and continue with step 2 of the procedure in Section J.1
of this appendix.

 • This step can also be performed as part of step 1, if PACE with Chip Authentication Mapping is

used.

 • Authentication is only complete in combination with authentication of the file containing the public

key (EF.CardSecurity) used for this step.

 5. Additional access control

 • Perform Terminal Authentication.

 • If only read access to less sensitive data in the eMRTD Application is required, this step can be

skipped.

Part 11. Security Mechanisms for MRTDs App J-3

 6. Reading/writing data

 • Reading/writing data includes selection of the applications containing the files.

 • Reading data can be started as soon as the necessary access rights are granted, e.g. less sensitive

data of the eMRTD Application can be read after step 1.

 • Data must not be considered genuine without authentication of the read data (step 3).

— — — — — — — —

 App K-1

Appendix K to Part 11

EUROPEAN EXTENDED ACCESS CONTROL (INFORMATIVE)

Terminal Authentication as defined in this document is based on Extended Access Control as used in the European Union
(see [TR-03110]) to protect access to fingerprints stored in the LDS1 application. This appendix points out the differences
between [TR-03110] and the protocols defined in this document.

The Advanced Inspection Procedure used to access eMRTDs equipped with EAC according to [TR-03110] comprises the
following steps:

 1. Perform the Chip Access Procedure (see Section 4.2) and select the eMRTD Application;

 2. Perform Chip Authentication in the eMRTD Application (see Section 6.2) and start Passive

Authentication (see Section 5.1);

 3. Perform Terminal Authentication (see below) in the eMRTD Application (see Section 7.1).

 Note.— Both Chip and Terminal Authentication are performed in the eMRTD Application in the European
Extended Access Control. The specifications in this document allow these protocols, depending on context, to be
performed either in the eMRTD Application or the Master File.

K.1 ACCESS RIGHTS

Table K-1. Authorization of Inspection Systems

7 6 5 4 3 2 1 0 Description

x x - - - - - - Role (see Doc 9303-12)

- - x x x x x x Access Rights

- - x x x x - - RFU

- - - - - - 1 - Read access to eMRTD Application: DG4 (Iris)

- - - - - - - 1 Read access to eMRTD Application: DG3 (Fingerprint)

Access rights to data groups in applications other than the eMRTD Application are conveyed via Authorization Extensions
as defined in Parts 12 and 10 of Doc 9303. Access rights for fingerprints (and iris) are conveyed via the Certificate Holder
Authorization Template:

For the computation of the effective access rights, see Section 7.1.4.3.6.

App K-2 Machine Readable Travel Documents

K.2 EF.CVCA

According to the specification, the trust points (Certificate Authority References) known to the IC for certificate verification
as part of Terminal Authentication are transmitted to the IFD as part of the PACE protocol
(see Section 4.4.3.5).

The European Extended Access Control defines a transparent file EF.CVCA in the eMRTD Application instead. The
specification is reproduced below:

Table K-2. Elementary File EF.CVCA

File Name EF.CVCA

File ID 0x011C (default)

Short File ID 0x1C (default)

Read Access PACE

Write Access NEVER (internally updated only)

Size 36 bytes (fixed) padded with octets of value 0x00

Content [CARi][||CARi-1][||0x00..00]

If the IC supports Terminal Authentication in the eMRTD Application, it MUST make the references of CVCA public keys
suitable for inspection systems available in a transparent elementary file EF.CVCA in the eMRTD Application as specified
in Table K-2.

This file SHALL contain a sequence of Certification Authority Reference (CAR) data objects (see Doc 9303-12) suitable
for Terminal Authentication.

 • It SHALL contain at most two Certification Authority Reference data objects.

 • The most recent Certification Authority Reference SHALL be the first data object in this list.

 • The file MUST be padded by appending octets of value 0x00.

The file EF.CVCA has a default EF identifier and short EF identifier. If the default values cannot be used, the (short) EF
identifier SHALL be specified in the OPTIONAL parameter efCVCA of the TerminalAuthenticationInfo.
If efCVCA is used to indicate the EF identifier to be used, the default EF identifier is overridden. If no short EF identifier
is given in efCVCA, the file EF.CVCA MUST be explicitly selected using the given EF identifier.

TerminalAuthenticationInfo ::= SEQUENCE {
 protocol OBJECT IDENTIFIER(id-TA),
 version INTEGER, -- MUST be 1
 efCVCA FileID OPTIONAL
}

FileID ::= SEQUENCE {
 fid OCTET STRING (SIZE(2)),
 sfid OCTET STRING (SIZE(1)) OPTIONAL
}

— END —

	Blank Page
	Blank Page

