/* * RIPE MD-160 implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * The RIPEMD-160 algorithm was designed by RIPE in 1996 * http://homes.esat.kuleuven.be/~bosselae/ripemd160.html * http://ehash.iaik.tugraz.at/wiki/RIPEMD-160 */ #include #include "ripemd160.h" #include "memzero.h" /* * 32-bit integer manipulation macros (little endian) */ #ifndef GET_UINT32_LE #define GET_UINT32_LE(n, b, i) \ { \ (n) = ((uint32_t)(b)[(i)]) | ((uint32_t)(b)[(i) + 1] << 8) | \ ((uint32_t)(b)[(i) + 2] << 16) | ((uint32_t)(b)[(i) + 3] << 24); \ } #endif #ifndef PUT_UINT32_LE #define PUT_UINT32_LE(n, b, i) \ { \ (b)[(i)] = (uint8_t)(((n)) & 0xFF); \ (b)[(i) + 1] = (uint8_t)(((n) >> 8) & 0xFF); \ (b)[(i) + 2] = (uint8_t)(((n) >> 16) & 0xFF); \ (b)[(i) + 3] = (uint8_t)(((n) >> 24) & 0xFF); \ } #endif /* * RIPEMD-160 context setup */ void ripemd160_Init(RIPEMD160_CTX* ctx) { memzero(ctx, sizeof(RIPEMD160_CTX)); ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; } #if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT) /* * Process one block */ void ripemd160_process(RIPEMD160_CTX* ctx, const uint8_t data[RIPEMD160_BLOCK_LENGTH]) { uint32_t A = 0, B = 0, C = 0, D = 0, E = 0, Ap = 0, Bp = 0, Cp = 0, Dp = 0, Ep = 0, X[16] = {0}; GET_UINT32_LE(X[0], data, 0); GET_UINT32_LE(X[1], data, 4); GET_UINT32_LE(X[2], data, 8); GET_UINT32_LE(X[3], data, 12); GET_UINT32_LE(X[4], data, 16); GET_UINT32_LE(X[5], data, 20); GET_UINT32_LE(X[6], data, 24); GET_UINT32_LE(X[7], data, 28); GET_UINT32_LE(X[8], data, 32); GET_UINT32_LE(X[9], data, 36); GET_UINT32_LE(X[10], data, 40); GET_UINT32_LE(X[11], data, 44); GET_UINT32_LE(X[12], data, 48); GET_UINT32_LE(X[13], data, 52); GET_UINT32_LE(X[14], data, 56); GET_UINT32_LE(X[15], data, 60); A = Ap = ctx->state[0]; B = Bp = ctx->state[1]; C = Cp = ctx->state[2]; D = Dp = ctx->state[3]; E = Ep = ctx->state[4]; #define F1(x, y, z) (x ^ y ^ z) #define F2(x, y, z) ((x & y) | (~x & z)) #define F3(x, y, z) ((x | ~y) ^ z) #define F4(x, y, z) ((x & z) | (y & ~z)) #define F5(x, y, z) (x ^ (y | ~z)) #define S(x, n) ((x << n) | (x >> (32 - n))) #define P(a, b, c, d, e, r, s, f, k) \ a += f(b, c, d) + X[r] + k; \ a = S(a, s) + e; \ c = S(c, 10); #define P2(a, b, c, d, e, r, s, rp, sp) \ P(a, b, c, d, e, r, s, F, K); \ P(a##p, b##p, c##p, d##p, e##p, rp, sp, Fp, Kp); #define F F1 #define K 0x00000000 #define Fp F5 #define Kp 0x50A28BE6 P2(A, B, C, D, E, 0, 11, 5, 8); P2(E, A, B, C, D, 1, 14, 14, 9); P2(D, E, A, B, C, 2, 15, 7, 9); P2(C, D, E, A, B, 3, 12, 0, 11); P2(B, C, D, E, A, 4, 5, 9, 13); P2(A, B, C, D, E, 5, 8, 2, 15); P2(E, A, B, C, D, 6, 7, 11, 15); P2(D, E, A, B, C, 7, 9, 4, 5); P2(C, D, E, A, B, 8, 11, 13, 7); P2(B, C, D, E, A, 9, 13, 6, 7); P2(A, B, C, D, E, 10, 14, 15, 8); P2(E, A, B, C, D, 11, 15, 8, 11); P2(D, E, A, B, C, 12, 6, 1, 14); P2(C, D, E, A, B, 13, 7, 10, 14); P2(B, C, D, E, A, 14, 9, 3, 12); P2(A, B, C, D, E, 15, 8, 12, 6); #undef F #undef K #undef Fp #undef Kp #define F F2 #define K 0x5A827999 #define Fp F4 #define Kp 0x5C4DD124 P2(E, A, B, C, D, 7, 7, 6, 9); P2(D, E, A, B, C, 4, 6, 11, 13); P2(C, D, E, A, B, 13, 8, 3, 15); P2(B, C, D, E, A, 1, 13, 7, 7); P2(A, B, C, D, E, 10, 11, 0, 12); P2(E, A, B, C, D, 6, 9, 13, 8); P2(D, E, A, B, C, 15, 7, 5, 9); P2(C, D, E, A, B, 3, 15, 10, 11); P2(B, C, D, E, A, 12, 7, 14, 7); P2(A, B, C, D, E, 0, 12, 15, 7); P2(E, A, B, C, D, 9, 15, 8, 12); P2(D, E, A, B, C, 5, 9, 12, 7); P2(C, D, E, A, B, 2, 11, 4, 6); P2(B, C, D, E, A, 14, 7, 9, 15); P2(A, B, C, D, E, 11, 13, 1, 13); P2(E, A, B, C, D, 8, 12, 2, 11); #undef F #undef K #undef Fp #undef Kp #define F F3 #define K 0x6ED9EBA1 #define Fp F3 #define Kp 0x6D703EF3 P2(D, E, A, B, C, 3, 11, 15, 9); P2(C, D, E, A, B, 10, 13, 5, 7); P2(B, C, D, E, A, 14, 6, 1, 15); P2(A, B, C, D, E, 4, 7, 3, 11); P2(E, A, B, C, D, 9, 14, 7, 8); P2(D, E, A, B, C, 15, 9, 14, 6); P2(C, D, E, A, B, 8, 13, 6, 6); P2(B, C, D, E, A, 1, 15, 9, 14); P2(A, B, C, D, E, 2, 14, 11, 12); P2(E, A, B, C, D, 7, 8, 8, 13); P2(D, E, A, B, C, 0, 13, 12, 5); P2(C, D, E, A, B, 6, 6, 2, 14); P2(B, C, D, E, A, 13, 5, 10, 13); P2(A, B, C, D, E, 11, 12, 0, 13); P2(E, A, B, C, D, 5, 7, 4, 7); P2(D, E, A, B, C, 12, 5, 13, 5); #undef F #undef K #undef Fp #undef Kp #define F F4 #define K 0x8F1BBCDC #define Fp F2 #define Kp 0x7A6D76E9 P2(C, D, E, A, B, 1, 11, 8, 15); P2(B, C, D, E, A, 9, 12, 6, 5); P2(A, B, C, D, E, 11, 14, 4, 8); P2(E, A, B, C, D, 10, 15, 1, 11); P2(D, E, A, B, C, 0, 14, 3, 14); P2(C, D, E, A, B, 8, 15, 11, 14); P2(B, C, D, E, A, 12, 9, 15, 6); P2(A, B, C, D, E, 4, 8, 0, 14); P2(E, A, B, C, D, 13, 9, 5, 6); P2(D, E, A, B, C, 3, 14, 12, 9); P2(C, D, E, A, B, 7, 5, 2, 12); P2(B, C, D, E, A, 15, 6, 13, 9); P2(A, B, C, D, E, 14, 8, 9, 12); P2(E, A, B, C, D, 5, 6, 7, 5); P2(D, E, A, B, C, 6, 5, 10, 15); P2(C, D, E, A, B, 2, 12, 14, 8); #undef F #undef K #undef Fp #undef Kp #define F F5 #define K 0xA953FD4E #define Fp F1 #define Kp 0x00000000 P2(B, C, D, E, A, 4, 9, 12, 8); P2(A, B, C, D, E, 0, 15, 15, 5); P2(E, A, B, C, D, 5, 5, 10, 12); P2(D, E, A, B, C, 9, 11, 4, 9); P2(C, D, E, A, B, 7, 6, 1, 12); P2(B, C, D, E, A, 12, 8, 5, 5); P2(A, B, C, D, E, 2, 13, 8, 14); P2(E, A, B, C, D, 10, 12, 7, 6); P2(D, E, A, B, C, 14, 5, 6, 8); P2(C, D, E, A, B, 1, 12, 2, 13); P2(B, C, D, E, A, 3, 13, 13, 6); P2(A, B, C, D, E, 8, 14, 14, 5); P2(E, A, B, C, D, 11, 11, 0, 15); P2(D, E, A, B, C, 6, 8, 3, 13); P2(C, D, E, A, B, 15, 5, 9, 11); P2(B, C, D, E, A, 13, 6, 11, 11); #undef F #undef K #undef Fp #undef Kp C = ctx->state[1] + C + Dp; ctx->state[1] = ctx->state[2] + D + Ep; ctx->state[2] = ctx->state[3] + E + Ap; ctx->state[3] = ctx->state[4] + A + Bp; ctx->state[4] = ctx->state[0] + B + Cp; ctx->state[0] = C; } #endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */ /* * RIPEMD-160 process buffer */ void ripemd160_Update(RIPEMD160_CTX* ctx, const uint8_t* input, uint32_t ilen) { uint32_t fill = 0; uint32_t left = 0; if(ilen == 0) return; left = ctx->total[0] & 0x3F; fill = RIPEMD160_BLOCK_LENGTH - left; ctx->total[0] += (uint32_t)ilen; ctx->total[0] &= 0xFFFFFFFF; if(ctx->total[0] < (uint32_t)ilen) ctx->total[1]++; if(left && ilen >= fill) { memcpy((void*)(ctx->buffer + left), input, fill); ripemd160_process(ctx, ctx->buffer); input += fill; ilen -= fill; left = 0; } while(ilen >= RIPEMD160_BLOCK_LENGTH) { ripemd160_process(ctx, input); input += RIPEMD160_BLOCK_LENGTH; ilen -= RIPEMD160_BLOCK_LENGTH; } if(ilen > 0) { memcpy((void*)(ctx->buffer + left), input, ilen); } } static const uint8_t ripemd160_padding[RIPEMD160_BLOCK_LENGTH] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* * RIPEMD-160 final digest */ void ripemd160_Final(RIPEMD160_CTX* ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH]) { uint32_t last = 0; uint32_t padn = 0; uint32_t high = 0; uint32_t low = 0; uint8_t msglen[8] = {0}; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT32_LE(low, msglen, 0); PUT_UINT32_LE(high, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); ripemd160_Update(ctx, ripemd160_padding, padn); ripemd160_Update(ctx, msglen, 8); PUT_UINT32_LE(ctx->state[0], output, 0); PUT_UINT32_LE(ctx->state[1], output, 4); PUT_UINT32_LE(ctx->state[2], output, 8); PUT_UINT32_LE(ctx->state[3], output, 12); PUT_UINT32_LE(ctx->state[4], output, 16); memzero(ctx, sizeof(RIPEMD160_CTX)); } /* * output = RIPEMD-160( input buffer ) */ void ripemd160(const uint8_t* msg, uint32_t msg_len, uint8_t hash[RIPEMD160_DIGEST_LENGTH]) { RIPEMD160_CTX ctx = {0}; ripemd160_Init(&ctx); ripemd160_Update(&ctx, msg, msg_len); ripemd160_Final(&ctx, hash); }