#include "../camera_suite.h" #include #include #include #include #include #include "../helpers/camera_suite_haptic.h" #include "../helpers/camera_suite_speaker.h" #include "../helpers/camera_suite_led.h" static uint8_t get_pixel(uint8_t* buf, uint8_t x, uint8_t y) { uint32_t pix_cnt = (y * FRAME_WIDTH) + x; uint32_t idx = pix_cnt / 8; uint8_t bit = pix_cnt % 8; return buf[idx] & (1 << (7 - bit)) ? 1 : 0; } static void draw_image(Canvas* canvas, uint8_t* cam_buf, uint8_t orientation) { furi_assert(canvas); furi_assert(orientation); for(size_t y = 0; y < FRAME_HEIGHT; y++) { for(size_t x = 0; x < FRAME_WIDTH; x++) { uint8_t x_cam; uint8_t y_cam; switch(orientation) { default: case 0: { // Camera rotated 0 degrees (right side up, default) x_cam = x; y_cam = y + 32; break; } case 1: { // Camera rotated 90 degrees x_cam = FRAME_WIDTH - y - 32 - 1; y_cam = x; break; } case 2: { // Camera rotated 180 degrees (upside down) x_cam = FRAME_WIDTH - x - 1; y_cam = FRAME_WIDTH - y - 32 - 1; break; } case 3: { // Camera rotated 270 degrees x_cam = y + 32; y_cam = FRAME_WIDTH - x - 1; break; } } uint8_t pixel = get_pixel(cam_buf, x_cam, y_cam); if(pixel) { canvas_draw_dot(canvas, x, FRAME_HEIGHT - y - 1); } } } } static void camera_suite_view_camera_draw(Canvas* canvas, void* model) { furi_assert(canvas); furi_assert(model); UartDumpModel* uartDumpModel = model; // Clear the screen. canvas_set_color(canvas, ColorBlack); // Draw the frame. canvas_draw_frame(canvas, 0, 0, FRAME_WIDTH, FRAME_HEIGHT); // Draw the image draw_image(canvas, uartDumpModel->pixels, uartDumpModel->orientation); // Draw the pinout guide if the camera is not initialized. if(!uartDumpModel->is_initialized) { // Clear the screen. canvas_clear(canvas); // Set the font to the secondary font. canvas_set_font(canvas, FontSecondary); // Draw the ESP32-CAM module. canvas_draw_str(canvas, 47, 50, "ESP32"); canvas_draw_str(canvas, 52, 58, "CAM"); canvas_draw_dot(canvas, 84, 3); canvas_draw_box(canvas, 50, 35, 23, 7); canvas_draw_circle(canvas, 42, 12, 1); canvas_draw_circle(canvas, 42, 16, 1); canvas_draw_circle(canvas, 42, 20, 1); canvas_draw_circle(canvas, 42, 24, 1); canvas_draw_circle(canvas, 42, 28, 1); canvas_draw_circle(canvas, 42, 32, 1); canvas_draw_circle(canvas, 42, 36, 1); canvas_draw_circle(canvas, 42, 8, 1); canvas_draw_circle(canvas, 59, 15, 1); canvas_draw_circle(canvas, 61, 17, 5); canvas_draw_circle(canvas, 61, 17, 9); canvas_draw_circle(canvas, 80, 12, 1); canvas_draw_circle(canvas, 80, 16, 1); canvas_draw_circle(canvas, 80, 20, 1); canvas_draw_circle(canvas, 80, 24, 1); canvas_draw_circle(canvas, 80, 28, 1); canvas_draw_circle(canvas, 80, 32, 1); canvas_draw_circle(canvas, 80, 36, 1); canvas_draw_circle(canvas, 80, 42, 1); canvas_draw_circle(canvas, 80, 8, 1); canvas_draw_line(canvas, 38, 4, 38, 58); canvas_draw_line(canvas, 39, 3, 83, 3); canvas_draw_line(canvas, 40, 2, 84, 2); canvas_draw_line(canvas, 48, 4, 74, 4); canvas_draw_line(canvas, 48, 5, 48, 26); canvas_draw_line(canvas, 55, 27, 49, 27); canvas_draw_line(canvas, 56, 25, 56, 36); canvas_draw_line(canvas, 64, 21, 63, 21); canvas_draw_line(canvas, 65, 15, 65, 17); canvas_draw_line(canvas, 66, 15, 64, 18); canvas_draw_line(canvas, 66, 16, 64, 19); canvas_draw_line(canvas, 66, 18, 60, 21); canvas_draw_line(canvas, 66, 19, 61, 21); canvas_draw_line(canvas, 66, 25, 66, 36); canvas_draw_line(canvas, 73, 27, 67, 27); canvas_draw_line(canvas, 74, 5, 74, 26); canvas_draw_line(canvas, 75, 4, 75, 25); canvas_draw_line(canvas, 83, 59, 39, 59); canvas_draw_line(canvas, 84, 4, 84, 58); canvas_draw_line(canvas, 85, 2, 85, 57); canvas_draw_frame(canvas, 78, 40, 5, 5); // Draw the pinout lines. canvas_draw_line(canvas, 39, 12, 21, 12); canvas_draw_line(canvas, 87, 24, 83, 24); canvas_draw_line(canvas, 87, 32, 83, 32); canvas_draw_line(canvas, 88, 23, 88, 13); canvas_draw_line(canvas, 88, 33, 88, 43); canvas_draw_line(canvas, 89, 12, 126, 12); canvas_draw_line(canvas, 126, 28, 83, 28); canvas_draw_line(canvas, 126, 44, 89, 44); // Draw the pinout labels. canvas_draw_str(canvas, 91, 11, "VCC-3V"); canvas_draw_str(canvas, 91, 27, "U0R-TX"); canvas_draw_str(canvas, 91, 43, "U0T-RX"); canvas_draw_str(canvas, 2, 16, "GND"); canvas_draw_str(canvas, 12, 25, "-GND"); // Draw the "Please Connect Module!" text. canvas_draw_str(canvas, 2, 40, "Please"); canvas_draw_str(canvas, 2, 49, "Connect"); canvas_draw_str(canvas, 2, 58, "Module!"); // Draw the "Back" text and button logo. canvas_draw_str(canvas, 92, 57, "Back"); canvas_draw_line(canvas, 116, 49, 116, 53); canvas_draw_line(canvas, 115, 50, 115, 52); canvas_draw_dot(canvas, 114, 51); canvas_draw_line(canvas, 117, 51, 121, 51); canvas_draw_line(canvas, 122, 52, 123, 53); canvas_draw_line(canvas, 123, 54, 122, 55); canvas_draw_line(canvas, 121, 56, 117, 56); } } static void save_image_to_flipper_sd_card(void* model) { furi_assert(model); UartDumpModel* uartDumpModel = model; // This pointer is used to access the storage. Storage* storage = furi_record_open(RECORD_STORAGE); // This pointer is used to access the filesystem. File* file = storage_file_alloc(storage); // Store path in local variable. const char* folderName = EXT_PATH("DCIM"); // Create the folder name for the image file if it does not exist. if(storage_common_stat(storage, folderName, NULL) == FSE_NOT_EXIST) { storage_simply_mkdir(storage, folderName); } // This pointer is used to access the file name. FuriString* file_name = furi_string_alloc(); // Get the current date and time. DateTime datetime = {0}; furi_hal_rtc_get_datetime(&datetime); // Create the file name. furi_string_printf( file_name, EXT_PATH("DCIM/%.4d%.2d%.2d-%.2d%.2d%.2d.bmp"), datetime.year, datetime.month, datetime.day, datetime.hour, datetime.minute, datetime.second); // Open the file for writing. If the file does not exist (it shouldn't), // create it. bool result = storage_file_open(file, furi_string_get_cstr(file_name), FSAM_WRITE, FSOM_OPEN_ALWAYS); // Free the file name after use. furi_string_free(file_name); if(!uartDumpModel->is_inverted) { for(size_t i = 0; i < FRAME_BUFFER_LENGTH; ++i) { uartDumpModel->pixels[i] = ~uartDumpModel->pixels[i]; } } // If the file was opened successfully, write the bitmap header and the // image data. if(result) { // Write BMP Header storage_file_write(file, bitmap_header, BITMAP_HEADER_LENGTH); // @todo - Add a function for saving the image directly from the // ESP32-CAM to the Flipper Zero SD card. // Write locally to the Flipper Zero SD card in the DCIM folder. int8_t row_buffer[ROW_BUFFER_LENGTH]; // @todo - Save image based on orientation. for(size_t i = 64; i > 0; --i) { for(size_t j = 0; j < ROW_BUFFER_LENGTH; ++j) { row_buffer[j] = uartDumpModel->pixels[((i + 32 - 1) * ROW_BUFFER_LENGTH) + j]; } storage_file_write(file, row_buffer, ROW_BUFFER_LENGTH); } } // Close the file. storage_file_close(file); // Free up memory. storage_file_free(file); } static void camera_suite_view_camera_model_init(UartDumpModel* const model, CameraSuite* instance_context) { furi_assert(model); furi_assert(instance_context); model->is_dithering_enabled = true; model->is_inverted = false; uint32_t orientation = instance_context->orientation; model->orientation = orientation; for(size_t i = 0; i < FRAME_BUFFER_LENGTH; i++) { model->pixels[i] = 0; } } static bool camera_suite_view_camera_input(InputEvent* event, void* context) { furi_assert(context); furi_assert(event); CameraSuiteViewCamera* instance = context; if(event->type == InputTypeRelease) { switch(event->key) { default: // Stop all sounds, reset the LED. with_view_model( instance->view, UartDumpModel * model, { UNUSED(model); camera_suite_play_bad_bump(instance->context); camera_suite_stop_all_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 0); }, true); break; } } else if(event->type == InputTypePress) { switch(event->key) { case InputKeyBack: { with_view_model( instance->view, UartDumpModel * model, { UNUSED(model); // Stop camera stream. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'s'}, 1); furi_delay_ms(50); // Go back to the main menu. instance->callback(CameraSuiteCustomEventSceneCameraBack, instance->context); }, true); break; } case InputKeyLeft: { with_view_model( instance->view, UartDumpModel * model, { // Play sound. camera_suite_play_happy_bump(instance->context); camera_suite_play_input_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 255); if(model->is_inverted) { // Camera: Set invert to false on the ESP32-CAM. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'i'}, 1); furi_delay_ms(50); model->is_inverted = false; } else { // Camera: Set invert to true on the ESP32-CAM. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'I'}, 1); furi_delay_ms(50); model->is_inverted = true; } instance->callback(CameraSuiteCustomEventSceneCameraLeft, instance->context); }, true); break; } case InputKeyRight: { with_view_model( instance->view, UartDumpModel * model, { // Play sound. camera_suite_play_happy_bump(instance->context); camera_suite_play_input_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 255); if(model->is_dithering_enabled) { // Camera: Disable dithering. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'d'}, 1); furi_delay_ms(50); model->is_dithering_enabled = false; } else { // Camera: Enable dithering. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'D'}, 1); furi_delay_ms(50); model->is_dithering_enabled = true; } instance->callback(CameraSuiteCustomEventSceneCameraRight, instance->context); }, true); break; } case InputKeyUp: { with_view_model( instance->view, UartDumpModel * model, { UNUSED(model); // Play sound. camera_suite_play_happy_bump(instance->context); camera_suite_play_input_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 255); // Camera: Increase contrast. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'C'}, 1); furi_delay_ms(50); instance->callback(CameraSuiteCustomEventSceneCameraUp, instance->context); }, true); break; } case InputKeyDown: { with_view_model( instance->view, UartDumpModel * model, { UNUSED(model); // Play sound. camera_suite_play_happy_bump(instance->context); camera_suite_play_input_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 255); // Camera: Reduce contrast. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'c'}, 1); furi_delay_ms(50); instance->callback(CameraSuiteCustomEventSceneCameraDown, instance->context); }, true); break; } case InputKeyOk: { with_view_model( instance->view, UartDumpModel * model, { // Play sound. camera_suite_play_long_bump(instance->context); camera_suite_play_input_sound(instance->context); camera_suite_led_set_rgb(instance->context, 0, 0, 255); // @todo - Save picture directly to ESP32-CAM. // furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'P'}, 1); // Save currently displayed image to the Flipper Zero SD card. save_image_to_flipper_sd_card(model); instance->callback(CameraSuiteCustomEventSceneCameraOk, instance->context); }, true); break; } case InputKeyMAX: default: { break; } } } return false; } static void camera_suite_view_camera_exit(void* context) { furi_assert(context); } static void camera_suite_view_camera_enter(void* context) { furi_assert(context); // Get the camera suite instance context. CameraSuiteViewCamera* instance = (CameraSuiteViewCamera*)context; // Get the camera suite instance context. CameraSuite* instance_context = instance->context; // Start camera stream. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'S'}, 1); furi_delay_ms(50); // Get/set dither type. uint8_t dither_type = instance_context->dither; furi_hal_serial_tx(instance->serial_handle, &dither_type, 1); furi_delay_ms(50); // Make sure the camera is not inverted. furi_hal_serial_tx(instance->serial_handle, (uint8_t[]){'i'}, 1); furi_delay_ms(50); // Toggle flash on or off based on the current state. If the user has this // on the flash will stay on the entire time the user is in the camera view. uint8_t flash_state = instance_context->flash ? 'F' : 'f'; furi_hal_serial_tx(instance->serial_handle, &flash_state, 1); furi_delay_ms(50); with_view_model( instance->view, UartDumpModel * model, { camera_suite_view_camera_model_init(model, instance_context); }, true); } static void camera_on_irq_cb(FuriHalSerialHandle* handle, FuriHalSerialRxEvent event, void* context) { furi_assert(handle); furi_assert(context); // Cast `context` to `CameraSuiteViewCamera*` and store it in `instance`. CameraSuiteViewCamera* instance = context; if(event == FuriHalSerialRxEventData) { uint8_t data = furi_hal_serial_async_rx(handle); furi_stream_buffer_send(instance->camera_rx_stream, &data, 1, 0); furi_thread_flags_set(furi_thread_get_id(instance->camera_worker_thread), WorkerEventRx); } } static void process_ringbuffer(UartDumpModel* model, uint8_t const byte) { furi_assert(model); furi_assert(byte); // The first HEADER_LENGTH bytes are reserved for header information. if(model->ringbuffer_index < HEADER_LENGTH) { // Validate the start of row characters 'Y' and ':'. if(model->ringbuffer_index == 0 && byte != 'Y') { // Incorrect start of frame; reset. return; } if(model->ringbuffer_index == 1 && byte != ':') { // Incorrect start of frame; reset. model->ringbuffer_index = 0; return; } if(model->ringbuffer_index == 2) { // Assign the third byte as the row identifier. model->row_identifier = byte; } model->ringbuffer_index++; // Increment index for the next byte. return; } // Store pixel value directly after the header. model->row_ringbuffer[model->ringbuffer_index - HEADER_LENGTH] = byte; model->ringbuffer_index++; // Increment index for the next byte. // Check whether the ring buffer is filled. if(model->ringbuffer_index >= RING_BUFFER_LENGTH) { model->ringbuffer_index = 0; // Reset the ring buffer index. model->is_initialized = true; // Set the connection as successfully established. // Compute the starting index for the row in the pixel buffer. size_t row_start_index = model->row_identifier * ROW_BUFFER_LENGTH; // Ensure the row start index is within the valid range. if(row_start_index > LAST_ROW_INDEX) { row_start_index = 0; // Reset to a safe value in case of an overflow. } // Flush the contents of the ring buffer to the pixel buffer. for(size_t i = 0; i < ROW_BUFFER_LENGTH; ++i) { model->pixels[row_start_index + i] = model->row_ringbuffer[i]; } } } static int32_t camera_suite_camera_worker(void* context) { furi_assert(context); CameraSuiteViewCamera* instance = context; while(1) { // Wait for any event on the worker thread. uint32_t events = furi_thread_flags_wait(CAMERA_WORKER_EVENTS_MASK, FuriFlagWaitAny, FuriWaitForever); // Check if an error occurred. furi_check((events & FuriFlagError) == 0); // Check if the thread should stop. if(events & WorkerEventStop) { break; } else if(events & WorkerEventRx) { size_t length = 0; // Read all available data from the stream buffer. do { // Read up to 64 bytes from the stream buffer. size_t buffer_size = 64; // Allocate a buffer for the data. uint8_t data[buffer_size]; // Read the data from the stream buffer. length = furi_stream_buffer_receive(instance->camera_rx_stream, data, buffer_size, 0); if(length > 0) { with_view_model( instance->view, UartDumpModel * model, { // Process the data. for(size_t i = 0; i < length; i++) { process_ringbuffer(model, data[i]); } }, false); } } while(length > 0); with_view_model(instance->view, UartDumpModel * model, { UNUSED(model); }, true); } } return 0; } CameraSuiteViewCamera* camera_suite_view_camera_alloc() { // Allocate memory for the instance CameraSuiteViewCamera* instance = malloc(sizeof(CameraSuiteViewCamera)); // Allocate the view object instance->view = view_alloc(); // Allocate a stream buffer instance->camera_rx_stream = furi_stream_buffer_alloc(2048, 1); // Allocate model view_allocate_model(instance->view, ViewModelTypeLocking, sizeof(UartDumpModel)); // Set context for the view view_set_context(instance->view, instance); // Set draw callback view_set_draw_callback(instance->view, (ViewDrawCallback)camera_suite_view_camera_draw); // Set input callback view_set_input_callback(instance->view, camera_suite_view_camera_input); // Set enter callback view_set_enter_callback(instance->view, camera_suite_view_camera_enter); // Set exit callback view_set_exit_callback(instance->view, camera_suite_view_camera_exit); // Allocate a thread for this camera to run on. FuriThread* thread = furi_thread_alloc_ex( "Camera_Suite_Camera_Rx_Thread", 2048, camera_suite_camera_worker, instance); instance->camera_worker_thread = thread; furi_thread_start(instance->camera_worker_thread); // Allocate the serial handle for the camera. instance->serial_handle = furi_hal_serial_control_acquire(UART_CH); furi_check(instance->serial_handle); furi_hal_serial_init(instance->serial_handle, 230400); // Start the asynchronous receive. furi_hal_serial_async_rx_start(instance->serial_handle, camera_on_irq_cb, instance, false); return instance; } void camera_suite_view_camera_free(CameraSuiteViewCamera* instance) { furi_assert(instance); // Deinitialize the serial handle and release the control. furi_hal_serial_async_rx_stop(instance->serial_handle); furi_hal_serial_deinit(instance->serial_handle); furi_hal_serial_control_release(instance->serial_handle); // Free the worker thread. furi_thread_flags_set(furi_thread_get_id(instance->camera_worker_thread), WorkerEventStop); furi_thread_join(instance->camera_worker_thread); furi_thread_free(instance->camera_worker_thread); // Free the allocated stream buffer. furi_stream_buffer_free(instance->camera_rx_stream); with_view_model(instance->view, UartDumpModel * model, { UNUSED(model); }, true); view_free(instance->view); free(instance); } View* camera_suite_view_camera_get_view(CameraSuiteViewCamera* instance) { furi_assert(instance); return instance->view; } void camera_suite_view_camera_set_callback( CameraSuiteViewCamera* instance, CameraSuiteViewCameraCallback callback, void* context) { furi_assert(instance); furi_assert(callback); instance->callback = callback; instance->context = context; }