Ui0O ¢ Department of Informatics
University of Oslo

An eMRTD inspection system
on Android

Design, implementation and evaluation

Halvdan Hoem Grelland
Master’s Thesis Spring 2016

An eMRTD inspection system on Android

Halvdan Hoem Grelland

2nd May 2016

ii

Abstract

All modern passports, ID cards from all around the world and a wide
range of other identification and travel documents contain a contactless
integrated circuit (IC).

The IC contains the data printed on the document as well as biometrics
of the holder (face image, fingerprints) and is protected by multiple
cryptographic mechanisms. The collective term used for such documents
is electronic Machine Readable Travel Document (eMRTD).

This Master’s project is given by the Norwegian National Directorate of
Police (POD). They wish to demonstrate and evaluate the use of an off-the-
shelf Android smartphone as a mobile Inspection System (IS) for eMRTDs.
The envisioned system is an app which uses the phone’s NFC interface to
read and verify the eMRTD IC contents.

In answer to this a prototype Android app has been researched,
designed, implemented and evaluated.

The app, “MRTD Inspector”, uses the phone’s camera and optical
character recognition (OCR) to read access keys from data printed on the
eMRTD, and performs the subsequent contactless inspection over NFC, as
specified in the relevant standards.

Observations and experiments have shown that the solution performs
well under certain conditions, but leaves room for improvement in others.
Data transfer rate is determined to be a major bottleneck, and sensitivity
to movement and positioning of the device is also identified as being a
challenge.

It is therefore concluded that current handsets are not quite suitable for
use as an eMRTD inspection system. However, current developments in
NEFC technologies holds great promise for future applications.

ii

iv

Acknowledgements

I would like to thank my supervisor Professor Audun Jesang for his valu-
able guidance and contagious enthusiasm. Our discussions, both on and off
topic, have been of great help and are much appreciated. He also deserves
credit for his work in orchestrating supervision meetings with everyone in-
volved.

A big thank you goes out to everyone involved at POD, Dr. Tage Stabell-
Kulg, Jon Olnes, and Jivind Neess, for sharing their deep domain know-
ledge and expertise. Our meetings and discussions have provided valuable
insight into an otherwise quite inaccessible field. Also, thanks for giving
me such an interesting and challenging project assignment.

Next, I'd like to thank my friends for their companionship through the
hard times, and to my colleagues for constantly reminding me to just finish
the damn thing. A special thanks goes to Mark Polak for providing much
needed input when I was at my most bewildered.

Furthermore, I would like to thank my family for their unconditional sup-
port and encouragement throughout these years.

Last, but certainly not least, a special thanks is given to Nadia for all her
love, understanding, encouragement and boundless patience.

vi

Contents

[List of Figures|
[List of Tables|

g &

=

Il Background]

2.1 ICAO and Doc 9303

B Electronic MRTDs|

[%.1 Logical Data Structure|
3.1.1 DGI-MRZ contents

B2

B3.1.2 EECOM - Common information|

B.1.3 EFES04 - Document Security Object|

Biometric data groups|

|3.2.1 Encoding

3.2.2 DG2 - Face

B23 DG3-Fin

B.24 DG4 -Tris

B3

Security protocols|

[3.3.3 Basic Access Controll

|3.3.4 Su

pplemental Access Control]

n

A

NLr

vii

NECE &

3.4 Public Key Infrastructure|. 26

B4I1 ICAOeMRIDPKI
342 EACPKI................... 30

[3.5 Inspection procedures|
B.51 Standard Inspection Procedure| 35)
B.52 Advanced Inspection Procedure] 36

B.6 Development] B7
B.7 Implementations|
B.71 EU passports and Council Regulation EU/2252/2004]
B.72 The German Identity Card]. 39]
B.7.3 The Norwegian implementation| 39]
4__Contactless smart cardsl A1l
M1 Standardsl 47
B11 ISO/IEC7816]ot 4Tl

1.2 ISO/IEC 14443, 47

13 ISO/IEC750Tf o 4Tl

B2 TSO/IECT4443and NFC] 1Y)
“4.2.1 Near Field Communication 42

4.3 Smart card filesystems| 0000000 43
44 Commandsl. o 44
41 Command APDUl. 44
@442 Response APDU| 44

4.5 Secure Messaging| L. 45
5__Androidl 47
b.1 _Architecture overview] 47
p.1.1 Securitymodel 48]

[p.2 Android software development| 48]
b21 AndroidSDKl 48
022 AndroidStudiolo 49

.3 Applicationmodel| 000 49]
F31 TLifecycles| b0
Bb.32 Storage|. 50

6 Related workl 51
61 Academicworksl. o o 51l
..............................
0.2.1 Open source libraries and applications|

0.2.2 Commercial and proprietary software| b4

T MRTD Inspectoq 55

7_Design 57
[7.1 ~Systemrequirements|,
[711 Guiding requirements|

712 Overview of features 58

viii

713 MRZOCRreader|.

[7.14 Contactless inspection|
[715 Configuration|
[71.6 Quality requirements|.
7.1.7 Limitationofscope|
I7.2__User interface and activities)
[7.3 System architecture| o oo
[7.3.2 Applicationservices| oL
[733 Storage|
{8 Implementation|

.1 Hardware and softwareusedl
B.1.1 Hardwarel
8.1.2 Third-party software|
IES;Z Cg!de g! ! eI ! ie&yl
B.21 MVPdesignpattern|
3.3.1 OcrEnginel
8.32 Continuous OCRdecoding]
B33 Tuning Tesserac]
- ontactless inspection

8.4 C less inspecti
4.2 rtd modelclassl o oo
843 Inspection|
.5 Known flaws and shortcomings|.
B6 Someobstacles.
[8.7 Presentation of MRTD Inspector|
B.71 Configuration and utility features|
B.7.2 Inspection workflow]

9__Evaluation|

9.1 ~Experiments and measurements|
P.1.2 Experiment A: MRZ recognition]

©9.1.3 Experiment B: Standard Inspection Procedure|
©9.1.4 Experiment C: Advanced Inspection Procedure| . . .
0.1.5 Experiment D: PACE execution|
0.2 Discussionoftheresultsl
9.21 MRZscanning|. oo
©9.22 Contactless inspection]
023 PACEexecufion.ot
0.3 Mainfindings| o 0L

ix

10.2 Software availability and quality|

10.3 Contactless performance and reliability|

[10.4 MRZ recognition on a mobile device]

11 Conclusion|

[11.1 Further workl|.

[11.1.1 The prospect of biometric authentication|

[T.1.2 Security]

[A° POD project description|

(B Inspection procedure flowchart|

[C_Downloadable content

[C.1 Experiments raw datal

NEEE &

122
123]
124

125

B

125]

H B

2

EIZT

List of Figures

(1.1 Examples of ePassport inspection systems.[. 4
RI1 Exampleof MRTD|
2 Break- nofaTD3IMRZ]
B.I TheePassportlogo|
B2 The certificate distribution problem] 30
B3 The EACPKThierarchy] B1
B.4 EACPKI cross certification] 33
8.5 The standard and advanced inspection procedures.
B.6 The eMRTD generations|. 37
BZ TheGermanelDcard] 39
B.1 ISO/IEC7816-4filetreel 43
b1 The Android softwarestack] 47
.2 Overview of an Android application process.| 49
[7.1 Overview of the app’s main activity| 62
[7.2" Manual credential entry, certificate management and config- |
uration) 63

[7.3 Overview of the system architecture and its components.| . . |64
8.1 The MRTD Inspector appicon| 67
B2 The developmentdevices] 68
8.3 Dependency graph of the source code modules]| 73
8.4 The Model-View-Presenter design pattern| 73
B5 MVPinthe Androidapp] 74
(8.6 The public API of OcrEnginejaval.
[8.7 The MRZ scanner continuous OCR decoding]. 76
(8.8 Flowchart of the OCR procedure| 77
.9 Excerpt from mrz_training_text.txt]. 3
.10 A section of the MRZ training image]. /9
.11 The MRZ image processing pipeline]. 33
(.12 The public APTof MrtdReader| B4
[8.13 Excerpt from the MrtdReaderListener interface| 34
B.14 The MrtdReader callback architecture] 86
BI5 TheMrtdclass] 87

xi

[8.16 Initialization of PassportService,| 88|

[8.17 Excerpt from MrtdReader: Certificate Path Validation] [2
[.18 Excerpt from MrtdReader: computing and comparing DG |
hashes| 03

[8.19 MRTD Inspector: menu, credentials manager and settings |
SCIEEILl . v v v

[8.20 MRTD Inspector: certificate management screen,|
. D Inspector: mainscreen.|.
[8.22 MRTD Inspector: credentials selection screen]. 99,

|§2§ Yl lg l D InsEector: MRZ scanner. |
|§Z§ Yl lgl Q InSEector: progress screen.| 100

; nspector: view screen|. ... [10T]
[8.27 MRTD Inspector: view fingerprint] 10Tl
QI TPACEexecutiontimes 114
9.2 Comparison of the MRZ recognition test cases| 115
[0.3 Duration of the Standard inspection procedure]. 116
[9.4 Duration of the Advanced inspection procedure, 116
0.5 Approximate duration of inspection] 11z

Xii

List of Tables

B.1 Thedatagroupsofthe LDS|. 16
B2 The eMRTD security protocols] 3
B.3 The eMRTD PKI key usage and validities] 28
@1 The Command APDU format). 44
4.2 The Response APDU format| 45
(8.1 Technical specifications of the development devices| 68
.2 Minimum specifications required for MRTD Inspector] . . . [69
8.3 The Tesseract configuration| BT
9.1 Test subjects and their features.| 104
02 DG2and DG3imagesizes]. 104
0.3 Measurements for experiment A 106!
0.4 Test cases for experiment A]
0.5 Results from experiment A]
0.6 Measurements for experimentB]
0.7 Test cases for experimentB], 110
0.8 Results from experimentB] 110
0.9 Approximate transfer rates of DG2 data]. 111
.10 Measurements for experimentCJ 11T
.11 Results from experimentC| 112

.12 Measurements for experimentD. 112
[0.13 Results from experimentD] 113

xiii

Xiv

Part 1

Introduction

Chapter 1

Introduction

Over the past few decades, globalization has given rise to a need for
strong and efficient, internationally interoperable identity verification and
management.

The first steps towards this was taken in the early 1980s with the
introduction of the Machine Readable Passport, the first release of Document
9303 by the International Civil Aviation Organization (ICAO). Doc 9303 has
since evolved to become the de facto standard for travel documents,
collectively referred to as Machine Readable Travel Documents (MRTDs).

The mid-2000’s advent of the electronic MRTD (eMRTD, ePassport)
marks the next generational leap for the MRTD standard with the
introduction of a contactless integrated circuit (IC) embedded into the data
page of the MRTD.

The IC contains a digital copy of the information printed on the
document as well as one or more biometrics of the holder (portrait image,
fingerprints), all protected with a suite of specialised security protocols.

As a result eMRTDs are cryptographically verifiable and, coupled with
biometric authentication of the holder, offer a much higher and more
efficient assurance of authenticity and originality than the non-electronic
MRTDs, which rely on physical security features alone.

Virtually all passports issued are now ePassports. In fact, they are is-
sued by over 100 State{] and economies [1] around the world. Also, in
many States the same or adjacent technologies and standards are being in-
tegrated into a wide range of identity and travel documents such as ID
cards and residence permits.

1.1 Motivation

With the sophistication of eMRIDs also comes the complexity of the
technology. In order to support the issuance and verification of eMRTDs
States have to implement and manage specialized PKIs, and inspection

I The capitalized S in State signifies an independent State as opposed to part of a country
(i.e. “the state of Illinois”). This convention is used throughout this Master’s thesis.

of documents is done with purpose-built systems employed at border
crossings and ID checkpoints.

These Inspection Systems (IS) must efficiently, reliably and securely
read and authenticate eMRIDs issued by a large number of States,
implementing the standards to varying degrees of compliance and with
differing features. Additionally, leveraging the biometric data dictates the
need for the IS to perform biometric authentication of the holder, including
capturing biometric samples and performing comparisons.

Due to these requirements traditional ISs, deployed for border control,
are often bulky, stationary and costly devices (example given in Figure
1.1a).

(a) ABC at Oslo Airport, from [2] with (b) Mobile ePassport verification
permission. terminal, from [3].

Figure 1.1: Examples of ePassport inspection systems: shows the
Automated Border Control system at Oslo Airport Gardermoen.
shows the Coesys Mobile eVerification Terminal by Gemalto.

For border control in an international airport, where travellers are fun-
nelled through a permanent checkpoint, these stationary machines are up
to the task?l

There are, however, a range of scenarios where one might want to
inspect eMRIDs in remote locations, away from a power outlet and
without the ability to carry heavy equipment. This could be a make-shift
immigration checkpoint on a ferry dock, a police officer performing on-the-
spot verification of an identity or even a (civilian or governmental) Internet
service utilizing ePassports for user authentication. Clearly, there are many
potential applications of a mobile solution for ePassport inspection.

For this reason various portable IS solutions are currently available.
However, they are commonly expensive, proprietary and do not necessar-
ily meet the expected degree of mobility. That is, though mobile they still
require the operator to bring along a dedicated and fairly large piece of
equipment (example given in . This makes many of the existing mo-
bile systems impractical for certain scenarios, such as the aforementioned
on-the-spot verification of identity.

2In fact, bulkiness is an effective anti-theft measure.

Today’s conventional mobile phones (smartphones) have become what
is essentially affordable, ultra-portable and powerful computers. In
addition they commonly contain a range of sensors and different means
of connectivity, making them usable for a multitude of purposes beyond
communication.

Most modern smartphones contain an interface for Near Field Commu-
nication (NFC). The NFC capability was initially intended for simple use
cases but the potential for more advanced applications quickly became ap-
parent as the capabilities of smartphones developed.

The banking and payment industries were among the first to take ad-
vantage of this with payment services based on NFC-capable phones such
as Apple Pay and Google Walle In fact, mobile payment is by many con-
sidered to be the killer app of NFC phones, and is one of the main catalysts
for further advancement of NFC capabilities in consumer grade devices.

As NEFC is fully compatible with the contactless interface in eMRTDs,
an attractive prospective solution to the lack of truly mobile inspection
systems presents itself: implement an IS as an NFC smartphone app.

The possible advantages are significant: truly mobile, connected, con-
siderably less expensive and potentially easier to manage. Additionally,
since most citizens own an NFC capable device the landscape for services
based on electronic identity documents opens up.

The Norwegian National Directorate of Police (POD) recognizes the
potential in a smartphone based Inspection System for eMRTDs.

As part of the G3kko project, which is a subordinate of the IDeAL]ﬁ
programme at POD they wish to gauge the practical feasibility of a
smartphone based solution for eMRTD inspection.

1.2 Goal

As stated in the previous section, POD wishes to investigate an envisioned
smartphone based eMRTD inspection system. In the initial project
description given by POD (Appendix|A) the concrete assignment is stated
as follows:

“The Police wishes to test the use of a standard mobile phone as an
inspection system for MRTDs. The assignment is, in short, to create
an app for Android which shows that this is a functionally
satisfactory solution.”

POD Master’s project description
(Appendix[A} translated from Norwegian)

We understand from this that the core of the assignment is to investigate
the feasibility of such a system. That is: to build a prototype, identify the

3Now Android Pay.
4IDeALT is a POD programme established to aid the fight against identity fraud.

practical challenges and limitations and propose solutions.

The questions we wish to answer by doing so are:

* How can an eMRTD inspection system on Android be realized?
¢ What are the limitations of our solution? What are the strengths?

¢ Are there generic limitations for such a system?

The goal of this Master’s thesis is to fulfil the assignment given by POD
through answering these questions.

1.3 Approach

Our primary approach is to design and implement a prototype Android
app for the inspection of ePassports. The design and implementation
process comprises the following:

¢ Gain understanding of the field: researching existing solutions to
this or adjacent problems, reviewing the relevant literature and the
technologies we are working with.

* Limit the scope: identifying and selecting the key functionalities
needed for our implementation and formulate our system require-
ments from these.

* Review and select the core technologies, hardware and software,
which we wish to use in our implementation.

¢ Implement a minimum prototype and iteratively improve upon it
with the goal of fulfilling our requirements.

* Document and describe findings, problems, solutions and design
choices.

Throughout the process we aim to identify both the problems and benefits
of our implementation with respect to our system requirements and,
ultimately, our research questions.

Additionally we design and execute a small series of experiments
in order to quantitatively gauge the performance of key parts of our
implementation.

The final evaluation of our implementation is based on the sum of these
parts. That is our observations and experiences from the development cycle
as well as the indications given by our experiments.

1.4 Work done

Our work has consisted of researching, designing and implementing a
prototype Android app which implements eMRTD inspection as defined
in ICAO Doc 9303 [4] and BSI TR-03110 [5] for NFC handsets.

We have also designed and conducted a small series of experiments
which give indication of performance and stability for key parts of the
inspection procedure in our implementation.

Part 11

Background

Chapter 2

MRTDs and ICAO Doc 9303

In this chapter we give an introduction to Machine Readable Travel Documents
(MRTDs). We start off by introducing the standard for MRTDs, namely
Doc 9303 which is published by the International Civil Aviation Organization
(ICAO). Continuing from this a brief survey of the MRTD standard is given,
focusing on the parts which are most significant to this project.

Seeing that Electronic MRTDs (eMRTDs) is the main field of study for this
Master’s project, Chapter 3| has been dedicated to the subject.

2.1 ICAO and Doc 9303

The International Civil Aviation Organization (ICAQO) is a United Nations
specialized agency, established in 1944 to carry out and manage the
“Convention on International Civil Aviation”, also known as the “Chicago
Convention”.

One of the functions of ICAO is as a standards organization for many
aspects of civil aviation, one of which is the standardization of MRTDs.

The ICAO standard for MRTDs is a twelve-part series of documents
known as Doc 9303 [4]. It specifies everything from physical construction
to the specifics of technical implementation, manufacture and issuance of
MRTDs.

The standard was first released in 1980 and became the initial basis
for issuance of machine readable passports by Australia, Canada and the
United States [6]. Today it is published in its seventh edition and is the
internationally recognized standard for travel documents issued by States
throughout the world.

Doc 9303 compliant electronic passports (ePassports), which is the de
facto standard for passports, are issued by over 101 States and economies
[1] and growing.

11

2.2 MRTDs

Machine Readable Travel Document (MRTD) is a collective term which refers
to the range of travel documents covered by Doc 9303. This includes
machine-readable passports (MRPs), visas (MRVs) and ID cards.

As stated in Doc 9303, an MRTD is principally characterized by the
presence of two mandatory zones: the Visual Inspection Zone (VIZ), which
is human-readable, and the Machine Readable Zone (MRZ), which is in
machine-readable format and contains a summary of the data contained
in the VIZ.

UTOPIA
Passport/ Type! Type Country code/ Code dupays Passport Number/ N° de passeport
Passeport P uTo L898902C3
Surname/ Nom
ERIKSSON
Given names/ Prénoms
ANNA MARIA
Nationality/ Nationalité
UTOPIAN
Date of Birth/ Date de naissance Personal No./ N° personnel
12 AUGUST/AOUT 74 ZE 184226 B
Sex/ Sexe Place of birth/ Lieu de naissance
ZENITH
Date of issue/ Date de délivrance Authority/ Autorité
16 APR/AVR 07 PASSPORT OFFICE
Date of expiry/ Date d’expiration Holder’s signature/ Signature du titulaire
15APR/AVR 12 (nna Maria Exifsson
P<UTOERIKSSON<<ANNA<KMARIA<L<LLLLLLLLLLLLLLKKLKKLK
L898902C36UT07408122F1204159ZE184226B<<<<<K10

N /
Figure 2.1: Example of MRTD, from [7]

The common specification for all MRTDs is given in part 3 of Document
9303 [7]. Though data contents, area of use and features vary between
the different subsets of MRTDs, they all conform to and extend from this
standard.

There are three physical sizes for MRTDs defined in Doc 9303: TD1,
TD2 and TD3. The TD1 size correspond to a standard ID card (“smart card
format”), whilst TD3 dimensions correspond to what most will recognize
as a standard passport.

Figure 2.1] shows an example of an MRTD data page containing a VIZ
(top part, printed information) and MRZ (bottom). The example is a TD3
MRTD.

221 MRZ

The introduction of the MRZ was the primary enabler of machine-
readability for the initial generation of MRTDs.

At the time, the MRZ was the sole mechanism for machine-readability,
and it is still an intrinsic part of the standard.

Essentially, the MRZ is a printed, machine-readable representation (or
summary) of the data printed on the data page (VIZ). Reading is done
optically: capturing an image of the MRZ and using optical character
recognition (OCR) to extract the data.

12

The data is then parsed by reading the data elements from fixed
segments and applying a set of encoding rules, specified by Doc 9303. An
example of the MRZ layout can be seen in Figure 2.2} which shows a break-
down of the data elements encoded in a TD3 MRZ.

In order to aid machine-readability the MRZ itself is printed in the OCR-
B type face, which is optimized for OCRE Only the uppercase A-Z and 0-9
subset of characters are used, as well as the “<” filler character. This makes a
total of 37 characters that the OCR system must recognize and differentiate.

Issuing country or -
Document type organization | Surname, then given name(s) of holder |

éhodrox<<SAHUEL<<<<<<<<<<<<<<<<<<<<<<<<<<<<|
|1ooo/oooo1|8|hod|730401||71H|190326||7H<<<<<<<<<<<<<<|mu

/
y
Passport number + Sex V

o Personal number
heck digit
check dig! / Date of birth + (optional) + check digit

check digit

- . Check digit over
Nationality of holder | Document date of ;
vy expiry + check digit previous groups

Figure 2.2: Break-down of a TD3 MRZ.

As can be seen from Figure additional check digits are provided for
the data elements on the lower line of the MRZ. These serve to increase the
reliability of reading those data elements, making detection of misreads
possible.

2.3 Machine Readable Passports

Machine Readable Passports (MRPs) are MRTDs in the TD3 booklet format
(125 x 88 mm). In addition to fulfilling the MRTD specification, the
specifics of MRPs are defined in part 4 [8] of Document 9303, including
the layout and contents of data elements, physical dimensions and so
forth. In practice almost all passports issued today conform to the MRP
specification.

LThe OCR-B font is commonly used for a range of applications where both human- and
machine-readability is desired, such as airline tickets, bills and cheques.

13

14

Chapter 3

Electronic MRTDs

Electronic MRTD, eMRTD, ePassport and biometric passport: These names all
refer to the same thing and are often used interchangeably, even in the
official ICAO standards. In essence, an ePassport is an MRP which has
a contactless integrated circuit (IC) embedded in the data page.

The IC contains the printed data of the ePassport data page, one or
more biometric measures (face image, fingerprint, iris scan) of the passport
holder and a security object which employs public key cryptography to
protect the contents against tampering, forgery, copying and unauthorized
access. The IC gives assurance of the authenticity of the passport data page
as well as enabling biometric authentication of the passport holder.

Electronic MRTDs are standardized in Doc 9303 parts 9 (deployment
of biometrics) [9], 10 (IC storage) [10], 11 (security mechanisms) [11] and
12 (PKI) [12]]. Additionally, EU passports implement an extension to these
standards known as Extended Access Control (EAC). It is standardized by the
German Federal Office for Information Security (BSI) in the technical report

TR-03110 [5].

Figure 3.1: The ePassport logo (also known as the “Chip inside” symbol) is
printed on all MRTDs which contain an ICAO 9303 compliant contactless
IC.

In this chapter we cover key aspects of the aforementioned eMRTD
standards, with special attention given to the data storage, the security
protocols employed by the IC for data protection and access control and
the PKI which those protocol rely upon.

The following sections assume that the reader has basic knowledge of
contactless smart cards technologies. A review of these can be found in

15

Chapter [4}

3.1 Logical Data Structure

For the purpose of universal interoperability, all data is stored on the IC
in a standardized data structure known as the Logical Data Structure (LDS),
specified by part 10 of Doc 9303 [10].

The LDS is organized as a collection of data groups which in turn
consist of standardized data elements. The standard in [10] specifies 16
data groups, named DGI1-16, of which the two first are mandatory whilst
the rest are optional. In addition there are two unnumbered mandatory
elementary files: EFCOM and EE.SO,.

Data stored in the LDS is encoded using BER-encoding (which is a
format for ASN.1). Table[3.1]lists all data groups of the LDS.

Data group | Description Required | Encoding
DG1 MRZ contents 4 BER
DG2 Encoded face v CBEFF
DG3 Encoded fingers X CBEFF
DG4 Encoded irises X CBEFF
DG5 Displayed portrait X BER
DG6 Reserved for future use X BER
DG7 Displayed signature or usual X BER

mark
DGS8 Data features X BER
DG9 Structure features X BER
DG10 Substance features X BER
DG11 Additional personal details X BER
DG12 Additional document features X BER
DG13 Optional details X BER
DG14 Security options for secondary X BER
biometrics
DG15 Active Authentication public key X BER
info
DG16 Persons to notify X BER
EFCOM | Common data for the LDS 4 BER
EF.SOq4 Document security object v/ BER

Table 3.1: The data groups of the LDS.

Following is a rundown of the most significant data groups and elementary
files[l Those which have been left out are classified as additional data and

IData groups are sometimes referred to as elementary files, which is imprecise.

16

most are not commonly used. The exception is data groups 14 and 15 which
are required for certain security protocols (discussed in|3.3).

3.1.1 DG1 - MRZ contents

Data group 1 contains the MRZ in its entirety, encoded as a single data
element.

3.1.2 EF.COM - Common information

EF.COM contains version information for the LDS and a list of all present
data groups. Thus, it acts as an index for the LDS contents and is typically
the first to be read in an inspection scenario.

3.1.3 EFE.SOq - Document Security Object

The Document Security Object contains hashes of all present data groups
in the LDS. It is stored as a SignedData object as defined by [10], which
contains a digital signature over the contained list of hashes alongside the
Document Signer Certificate.

The purpose of EESO4 is thus to make the content of the LDS
cryptographically verifiable by the reader, and of the security mechanisms
for eMRTDs have a baseline reliance on it.

3.2 Biometric data groups

Data groups 2, 3 and 4 of the LDS contain the biometric features of the
passport holder. DG2 is mandatory for all ePassports whilst DGs 3 and 4
are defined as “additional biometrics” and are optional.

3.21 Encoding

All of the biometric data groups are structured and encoded in accordance
with the standard given in Doc 9303 part 10 [10].

A Biometric Information Template (BIT) group template is specified,
which allows nesting BITs and storing multiple biometrics This
format harmonizes with the Common Biometric Exchange Formats Framework
(CBEFF), and the actual biometric payload is encoded in compliance with
this.

3.2.2 DG2 -Face

Data group 2 contains the encoded face image of the passport holder. The
image is photographed and cropped to meet the specifications of Doc 9303

2In fact nesting is always used, even for single biometrics.

17

part qﬂ The format of the image is specified to ensure compatibility with
facial recognition systems [9].

The “encoded face” is simply an image of the passport holder’s face.
Storing a facial recognition template instead is disallowed by the standard
since these are vendor specific, making a facial recognition-optimized
source image the only viable option to ensure interoperability.

3.2.3 DGS3 - Fingerprints

Data group 3 contains the encoded fingerprint(s) of the passport holder.
As the standard specifies optional multiple biometrics, more than one
fingerprint can be encoded.

3.24 DGA4-Iris

Data group 4 contains the encoded iris image of the passport holder. The
specification allows for one or two encoded irises.

3.3 Security protocols

As previously mentioned, eMRTD ICs employ a suite of dedicated security
protocols. These protocols, seen in Table protect various aspects of the
IC in order to prevent unauthorized access and proving authenticity of the
document.

According to Doc 9303 only Passive Authentication is the only mandatory
protocol for all eMRTDs. EU passports, however, are mandated to support
BAC/SAC and EAC (when using secondary biometrics). Note that the
implementation of EAC is not specified in Doc 9303, but is outlined as a
concrete security mechanism. Hence, the EAC protocols given in Table
are external to the Doc 9303 eMRTD standard but adhere to BSI TR-03110
[5].

Protocol Protects
Basic Access Control Confidentiality
Supplemental Access Control | Confidentiality
Passive Authentication Authenticity
Active Authentication Originality
Extended Access Control
Chip Authentication Originality + confidentiality
Terminal Authentication Authenticity

Table 3.2: The eMRTD Security protocols. Note that Chip Authentication
and Terminal Authentication make up the two components of the Extended
Access Control protocol.

3The encoded face image is for all intents and purposes the same image which is
displayed in the passport data page VIZ (specified in [7]).

18

For the following sections we establish some nomenclature:
1. IS: Inspection System - terminal

2. IC: Integrated Circuit - eMRTD

3.3.1 Passive Authentication

The goal of Passive Authentication is to prove the authenticity of the data
contained in the LDS. Recall that the LDS contains a Document Security
Object SO4 which holds the hash of all contained DGs as well as digital
signature computed over this list of hashes.

In essence PA consists of the inspection system verifying the authen-
ticity of these hashes, and thus the data groups. The IC itself does not
actively participate; all processing in performed on the IS. Hence the name
Passive Authentication.

For PA an inspection system (IS) carries out the following steps:

1. Read EF.S04 from the eMRTD.

2. Look up and retrieve the corresponding Document Signer Certificate
Cps from either EF. S04 itself or some other source.

3. Look up and retrieve the Country Signing CA Certificate Ccsc 4 and the
Certificate Revocation List CRL.

4. Verity Cps using Ccsca and asserting it is not in the CRL.
5. Verify the signature of SO, using Cps.

6. Compute the hash values of each DG of the LDS and compare them
to their counterpart in EF . SO0g4.

The trust anchor of the verification process is the CSCA Certificate Ccsca,
which is assumed by PA to be genuine. Consequently, an inspection system
implementing PA must make sure Ccsca and CRL are retrieved from a
trusted source (the underlying PKI is described in [3.4.).

Passive Authentication enables the inspection system to certify the
integrity of the data groups, but does not prevent cloning or physical
substitution of the chip.

Since PA is required and verifies the authenticity the eMRTD against
the PKI, other security protocols (described in the following sections) rely
on PA as a source of trust.

3.3.2 Active Authentication

Active Authentication is a countermeasure for chip substitutio and
copying attacks. It lets the IS verify the authenticity of the IC by means
of a digital signature-based challenge-response protocol.

4Physically changing the chip of the eMRTD.

19

Support for AA is indicated by the presence of DG15, which contains
the public key PK44 needed by the IS to verify the response. The private
key Kprivay4 is, of course, only accessible to the IC itself.

Assuming the IS has read the public key PKa4, the steps of AA are as
follows:

1. The IS generates a random nonce RN Djs and sends it to the IC.

2. The IC creates the message Mﬂ signs it using Kpriv4 and sends the
signature ¢ to the IS.

3. The IS verifies o using PK s 4.

By successfully passing AA the IC has proved that it knows Kpriv4 4. Since
the integrity of DG15, which contains PK4 4, has been verified by PA it is
therefore implicitly proven that the IC is genuine.

3.3.3 Basic Access Control

The purpose of Basic Access Control is to ensure that the IS has physical
access to the eMRTD’s data page, that is, to prevent reading the IC without
the holder’s knowledge. It does so by requiring the IS to authenticate
using the Document Basic Access Keys which are derived from information
readable in the MRZ. By demonstrating knowledge of the keys the IS
proves to the IC that it has physically read the data page of the eMRTD.
Once authenticated, session keys are generated and Secure Messaging is
started between the IC and IS.

The Document Basic Access Keys KBg,. and KBpjac are stored in
private memory of the IC, and have to be derived by the IS prior to
initiating the BAC protocol. The key derivation process is as follows:

1. The IS obtains three fields of the MRZ: the Document Number, the
Date of Birth and the Date of Expiry. Typically the IS will do so by
optically reading the MRZ, but the data is readable from the VIZ as
well, making manual reading and entry by an operator possible.

2. The key seed K is generated by concatenating the fields and applying
the SHA-1 hash function.

3. The ICAO KDF as defined in [11]] is used by the IS to derive the two
3DES keys KBgj, and KBpjac from K.

These are the steps of Basic Access Control:

1. The IC chooses the nonce RN D¢ and key seed Kjc randomly. RNDjc
is then sent to the IS.

5The composition of M depends on the signature algorithm used, but always contains
RNDjs.

20

2. The IS chooses the nonce RNDjg and key seed K;s randomly. It then
sends the encrypted challenge ;s to the IC, which is derived using an
encrypt-then-MAC scheme over the plaintext RNDs||[RNDjc||Kys
with the Document Basic Access Keys Ky, and Kpge.

3. The IC decrypts ejs using Kgne and Kpgee and verifies that RND-
extracted from the plaintext matches RNDjc.

4. Next, the IC responds with the encrypted challenge e;c which is
derived with the same scheme and keys as e;s, but over the plaintext
RNDjc||RNDs||Kjc.

5. The IS decrypts ejc using Kgn and K, and verifies that RND/g
extracted from the plaintext matches RNDys.

After successfully completing BAC all subsequent messages are pro-
tected by Secure Messaging. The SM session keys KSg,. and KSy4c are
derived from the common master secret Kpuster := Kjc @ Krs. The Send
Sequence Counter for SM is initialized from RNDc and RNDjs.

3.3.3.1 Weaknesses

BAC has received much criticism for its low levels of protection.

As stated, its purpose is to protect against skimming attacks from
parties without physical access to the document. However, the protection
relies solely on the Document Basic Access Keys, which are derived from
the MRZ and are ultimately used as keying material for the session keys.

The first two MRZ fields, the date of birth and the date of expiry, are not
randomly distributed but in fact quite limited in terms of possible values,
and the document number often follows known conventions in structure,
limiting the key space further.

The result of these factors is that the entropy of the derived keys are
very low and opens the possibility for brute-force skimming attacks.

As a matter of fact, practical attacks in this vein have been successfully
mounted against BAC [13], as well as a replay attack which enables tracing
individual BAC eMRTDs [14]].

3.3.4 Supplemental Access Control

“Supplemental Access Control”[15] (SAC) is the name of an ICAO Technical
Report which defines access control mechanisms supplementary to BAC. It
is based on the Password Authenticated Connection Establishment (PACHY)
protocol, and is essentially a framework which fixes a set of parameters
and options for PACE in eMRTDs.

In SAC, PACE has an analogous role to BAC: preventing reading of
the IC without physical access and setting up an encrypted session. Thus,
SAC is used in lieu of BAC, and is, in fact, devised partly to address the
aforementioned BAC weaknesses.

®For the sake of simplicity we're referring to PACEv2 as PACE.

21

3.3.4.1 Password Authenticated Connection Establishment

PACE is password authentication protocol based on Diffie-Hellmann key
agreement (DH). As stated in [15] it is a generic protocol which is not
necessarily exclusive to eMRTDs. However, as our focus in indeed eMRTDs
and SAC, we are describing the protocol within that context.

Similarly to BAC, the IS and IC share a static password 7t which is visu-
ally or optically read from the eMRTD data page. Knowledge of 7t therefore
serves as proof of physical access. The shared password 7 is in turn used
to derive the shared key set K,;.

In [15] the following options for 7t are defined:

* MRZ: 7 is derived from the MRZ in a similar fashion to the
Document Basic Access Keys in BAC, meaning it is based on the
Document Number, Date of Birth and Date of Expiry fields.

* CAN: 7t is a Card Access Number (CAN). The CAN is printed in
human-readable format on the data page of the eMRTD. It must be
chosen randomlyﬂ

According to [15] only the MRZ option is required, whilst supporting a
CAN is optional. The advantage of supporting a CAN is, of course, that it
is much more convenient to deal with in the case of manual entry into the
IS.

[15] defines three mappings for PACE:

¢ Generic Mapping (GM): Diffie-Hellman key exchange.
* Integrated Mapping (IM): direct mapping of a field element.

¢ Chip Authentication Mapping(CAM): an extension of GM which
integrates PACE with Chip Authentication.

According to the SAC specification: If PACE-CAM is supported by the
IC, at least one of PACE-IM and PACE-GM must also be supported. An IS
is required to support PACE-IM and PACE-GM whilst support for PACE-
CAM is optional.

In order to initiate PACE the IC must first choose parameters from those
available for the eMRTD. The PACE parameters are made available in the
elementary file EF . CardAccess. This EF is located directly under the Master
File (outside the LDS) and is publicly readable.

SAC specifies a set of parameters which must be supported by
inspection systems:

¢ Key agreement: Diffie-Hellman (DH) or Elliptic Curve Diffie-
Hellman (ECDH).

7Using a cryptographically strong method of random number generation.

22

Mapping: GM, IM or CAM.

Symmetric cipher: 3DES or AES.

Key length: 112 for 3DES. 128, 192, 256 for AES.
SM scheme: CBC/CBC for 3DES, CBC/CMAC for AES.
Auth. token: CBC for 3DES, CMAC for AES.

A suite of PACE parameter combinations are specified for SAC in [15,
p. 215, Table 2]. An IS must support all of thes whilst an eMRTD must
support at least one. The parameter suites are made available as a list of
Object Identifiers (OIDs) in EF . CardAccess, and the IS is free to choose from
these.

Once the IS has acquired the password 7t and has chosen a set of PACE
parameters, the protocol can be initiated. Following are the (simplified)
steps of PACE:

1.

The IC chooses the random nonce RNDj¢ and derives the shared key
Ky from 1. RNDjc is encrypted using the chosen symmetric cipher
with K and the ciphertext crnp is sent to the IS.

The IS derives K;; and decrypts crnp, recovering RNDc.

Both the IC and IS do the following:

a.

b.

Choose a random ephemeral key pair, [SKpp ic, PKpp,is] and
[SKpp 1s, PKpp 1s] respectively.
Exchange the data required for mapping the nonce. The data
depends on the mapping:
* GM and CAM: the IC and IS exchange the ephemeral public
keys PKDH,IC and PKDH,IS .
e IM: The IS chooses an additional random nonce RNDjs and
sends it to the IC.

. Use the mapping function as defined in [15, p.16, Section 3.4.2]

to compute the ephemeral domain parameters Dy, from the
exchanged parameters.

. Generate the shared secret K by performing the anonymous DH

key agreement with Dpyp.

. Derive session keys KSpjac and KSg,. using the specified key

derivation functions.

. Compute the authentication tokens Tjg := MAC(KSpmac, PKpy ic)

and Tjc := MAC(KSwuac, PKpp 1s), respectively, and exchange
them. The tokens are verified on each side.

4. In the case of PACE-CAM the IC computes the CA data CAjc,
encrypts it using the shared session key Kg,. and sends it to the IS.
The IS recovers CAjc from the ciphertext and authenticates the chip.

8The exception is PACE-CAM, for which support is optional.

23

After successfully performing PACE, SM is started using the session
keys K and Kpjqc. The SSC is initialized to zero.

3.3.4.2 A better BAC?

As mentioned, SAC (and PACE) has been developed in answer to the
known weaknesses of BAC. Whilst the entropy of BAC session keys
are directly dependant on the entropy of the MRZ-derived static access
keys, PACE uses the MRZ-data for initial access and employs asymmetric
cryptography to establish strong session keys instead.

Clearly, the implementation of PACE in eMRTDs raises the level of
security. There is an interesting paradox with this, however: the ICAO
requirement for backwards compatibility with non-SAC eMRTDs dictates
that both protocols must be available and provide the same level of access.
Many would argue that this defeats the purpose, but it is seemingly a
necessary step on the long road towards BAC deprecation.

3.3.5 Extended Access Control

With Doc 9303 definition of the additional biometrics [l as more sensitive
comes a recommendation for stricter protection. Extended Access Control is
suggested as one way of achieving a higher level of protectio However,
Doc 9303 does not require nor specify EAC and leaves the implementation
up to the issuing States.

The EU decided to include the fingerprint additional biometric in all
new passports starting from mid-ZOOﬂ and to protect it with EAC as
specified by the German BSI “TR-03110" [5].

[5] specifies two protocols for EAC: Terminal Authentication (TA) and
Chip Authentication (CA). TA and CA fulfil different requirements of EAC
and only the successful execution of both is deemed sufficient to elevate
access of the inspection system (IS).

Like the ICAO protocols specified in Doc 9303, both of the EAC
protocols rely on a PKI. The CA protocol, like AA, relies on Passive
Authentication. Terminal Authentication, however, is dependent on an
entirely separate PKI, often dubbed the EAC PKI. The EAC PKI is outlined
in3.4.2

3.3.5.1 Chip Authentication
Chip Authentication has two purposes:

¢ Authenticate the IC to ensure it is genuine.

¢ Establish a strongly encrypted SM session using a chip-specific key
pair.

’DG3 and DG4.
19Data encryption being the other.
" This new EAC passport is commonly referred to as the 2" generation ePassport.

24

Recall that the purpose of Active Authentication (see is also to
authenticate the IC. Thus, CA is an alternative to AA, but has the added
benefit of providing strong session keys[5].

The CA protocol itself is an ephemeral-static Diffie-Hellman key
agreement protocol. It establishes SM using static keys stored in the IC,
whilst ephemeral keys are used on the IS side. The steps of the protocol are
as follows:

1. The IC sends its static DH public key PKjc along with the domain
parameters Djc to the IS.

2. TheIS creates its ephemeral DH key pair [SKjs, PKIS, Djs] and sends
the public key PKjs to the IC.

3. Both parties proceed to do the following;:

a. Perform the DH key agreement algorithm to compute the shared
secret K.

b. Derive the shared session keys Ky 4c and Kgy,. by applying the
key derivation function to K.

c. Compute the IS” compressed public key Comp(PKjs) (used for
TA).

As stated in [5], the IS must ultimately verify the authenticity of PKjc
by performing Passive Authentication. If PA fails the IC may not be
considered genuine, regardless of whether CA was successful or not.

Once CA has successfully been completed, Secure Messaging is re-
initialized using the newly derived session keys.

3.3.5.2 Terminal Authentication

Terminal Authentication authenticates the IS and grants explicit access to
sensitive data groups. It is a challenge-response protocol based on Card
Verifiable Certificates (CVCs, see[3.4.2.4).

An IS holds a CVC and corresponding private key which have been
issued and signed by a Document Verifier (DV). The DV certificate is in
turn granted by a Country Verification Certificate Authority (CVCA) (the trust
anchor). The CVC contains the Access Rights given to the IS, which is
ultimately used by the IC to determine access. This system is referred to
as the EAC PKI, and is explained in further detail in

In order to successfully authenticate using TA an IS must provide a
Valile_ZI chain of CVCs which matches the CVCA of the IC and prove
knowledge of the IS private key.

Additionally, [5] states that since the IS may access sensitive data after
TA has been completed, the ephemeral public key PK;s (which was used
to set up SM by CA) must be authenticated as well. By doing so the access
rights granted as a result of TA are bound to the SM session.

12Within the validity period and not revoked.

25

The identifier IDjc used in TA is dependent on the whether BAC or
PACE was used to set up the SM session. If BAC was used IDjc is the Doc-
ument Number. If PACE was used IDjc is computed from the ephemeral
PACE public key PKpack,ic[”

In preparation for TA the IS must resolve the needed chain of certificates
Cjs. This entails:

¢ Reading the root CVCA public key PKcyca from DG14 of the I

* Building a chain of certificates which starts with a DV verifiable by
PKcyca and ends with the IS certificate.

The steps of the TA protocol are as follows:

1. The IS sends the certificate chain Cjg to the IC.
The IC verifies Crs and extracts PK;g from the IS certificate.

A random nonce RN D¢ is chosen by the IC and sent to the IS.

L

The IS creates the signature S;s by signing ID;c||[RNDjc||PK ISE]
using the IS private key SKys. Sis is then sent to the IC.

5. The IC verifies Sjc using PKjs.

After successfully performing TA the IC grants access in accordance
with the Access Rights of the IS certificate. It must also check that
the compressed IS public key PK;s/ matches the one computed upon
completing CA, ensuring privileges are bound to the same session.

3.4 Public Key Infrastructure

The verification of authenticity and originality for eMRTDs relies on
Passive Authentication (3.3.1), which in turn relies on the signed Document
Security Object SOq4. Of course, creating and verifying the signature has to
be supported by a PKI.

Similarly, EAC is also dependent on a (separate) PKI, which is
referred to as the EAC PKI. An overview of the ICAO eMRTD PKl is given
in[3.4.1] whilst the EAC PKI is reviewed in

13This is referred to as dynamic binding. There is also static binding which directly uses
the Document Number (as for BAC) or the CAN, but it is deprecated.

4Typically done for CA.

15PK;,1 is the compressed IS public key.

26

3.4.1 ICAO eMRTD PKI

ICAO Doc 9303 Part 12 [12]] defines a PKI standard for eMRTDs. As stated
in [12], it is based on generic PKI standard However, since the eMRTD
application is comparatively simple many elements from multi-application
PKIs (such as the Internet PKI) are irrelevant and therefore not supported.
As such the eMRTD PKl is a rather uncomplicated affair. Notably:

¢ Only a single root CA (CSCA) is supported per issuing State.

* An eMRID is certified using a single certificate (the Document
Signer). Complex certification paths are not needed nor supported.

[12] defines the following entities for the eMRTD PKI:

Country Signing Certificate Authority - CSCA

* Document Signer - DS

Inspection System - IS

Master List Signer

Deviation List Signer

3.4.1.1 Country Signing Certificate Authority

In the eMRTD PKI each issuing State has a single CSCA. The CSCA is
the root CA and is therefore the trust anchor for all eMRTDs issued by
that State. CSCAs are used to issue certificates for Document Signers,
Master List Signers and Deviation List Signers as well as issuing Certificate
Revocation Lists (CRLs).

3.4.1.2 Document Signer

Document Signers are, as is deductible from the name, responsible for
signing eMRTDs. More precisely, the DS signs the contents of SOg.
Consequently, verifying SOq4 (essentially PA, see is done by means
of the DS public certificate.

3.4.1.3 Inspection System

In the eMRTD PKI an Inspection System (IS) defined as the system which
performs Passive Authentication and thereby performs validation of the
DS certificate (based on trust in a known CSCA certificate).

3.4.1.4 Master List Signer

The Master List Signer (MLS) signs a list of both domestic and foreign
CSCA certificates, known as a CSCA Master List. [12] defines the MLS
as optional.

16X 509, RFC 5280

27

3.4.1.5 Deviation List Signer

The Deviation List Signer (DLS) signs a Deviation List. As the name implies
a Deviation List is a signed list issued in order to inform of anomalies with
the keys/certificates, LDS, MRZ or IC of an eMRTD. The use of a Deviation
List is optional for the eMRTD PKI.

3.4.1.6 Certificates and keys

The public keys for the CSCA, DS, MLS and DLS are issued as X.509
certificates, as per the specification in [12].

[12] also defines validity periods for the private and public keys. As the
private key is used for issuing (signing) and the public keys are used for
validation, it is clear that there is an asymmetric relationship in the validity
of the two. For example, a typical MRTD has a validity of 10 years, but
the issuing Document Signer’s private key is only valid for 3 months. Of
course, the DS public key certificate must be valid for the lifetime of the
signed MRTD, but cannot exceed it significantly as that would imply that
the MRTD IC itself can be validated past its expiry. Likewise, the CSCA
public key must be valid for the lifetime of all documents signed by its
subsidiary Document Signers. Table 3.3| outlines the relationships between
private key usage and certificate validity.

Entity | Use of Private Key Public Key Validity
CSCA | 3-5 years 13-15 years

DS Up to 3 months approx. 10 years
MLS | Discretion of issuer Discretion of issuer
DLS Discretion of issuer Discretion of issuer

Table 3.3: The key usage and validities for the eMRTD PKI, assuming a 10
year passport validity. The table is reproduced (and slightly altered) from
[12, p. 5, Table 1].

This asymmetric relationships between private key usage and public key
validity means that an issuing State will at any given time have multiple
valid CSCA certificates and DS certificates in their eMRTD PKI.

3.4.1.7 PKI Distribution

It is worth noting that each eMRTD issuing State runs its own, entirely
independent PKI. As stated previously this PKI manages multiple public
certificates of varying and overlapping validity.

The verification of an eMRTD relies on trust in and knowledge of the
issuing PKI. Thus, verifying documents issued by foreign States requires
the verifying party to have (trusted) access to the relevant PKI. The
requirement of global interoperability coupled with the co-existence of all
of these PKIs suggests the need for standardized mechanisms for exchange
and distribution of certificates between issuing States.

28

The eMRTD PKI standard in [12, p. 9] gives the following short-list of
certificate distribution mechanisms:

¢ Public Key Directory (PKD)

Bilateral exchange

Master Lists

Deviation List

The eMRTD IC (contains the signing DS certificate)

Bilateral exchange refers the direct exchange or handover of certificates,
which might entail a range of methods (physical delivery, public download,
LDAP server etc.). Common for all of these is that no third party is directly
involved in distribution.

Master Lists, or CSCA Master Lists, is a subset of the bilateral distribu-
tion scheme[12, p. 11]. They are signed lists of CSCA certificates which are
trusted by the signing party. As such, the Master List is a supportive mech-
anism which simplifies bilateral CSCA distribution: a Master List issued
by a trusted party can provide implicit trust in third-party CSCA certific-
ates. As an example, the German CSCAE] makes the current German CSCA
Master List available as a public download.

Of course, the distribution methods which do not employ a central
broker are inherently harder to manage. For these, distribution of
certificates is essentially a many-to-many problem which quickly grows
with exponential rate. A central broker such as a PKD helps alleviate this.
The problem is illustrated in Figure

7The German eMRTD issuer, operated by the Federal Office for Information Security
(BSI).

29

A ‘
E G

n(n—1)
2

(2
O
(2

N = N=n

N : Number of root certificate distributions
n : Number of States

Figure 3.2: The certificate distribution problem. The left side illustrates the
situation for bilateral exchange of certificates (which grows quadratically
with 1) and the right side illustrates the central broker model (which grows
linearly), such as a PKD.

3.4.1.7.1 ICAO Public Key Directory

In order to enable global interoperability through PKI distribution,
ICAO operates and provides a service known as the ICAO Public Key
Directory [12]. In short, the ICAO PKD accepts certificates, Master Lists,
CRLs and so forth from participants. These objects are then made available
to the participating States through the PKD service. In practical terms the
ICAO PKD offers updated collections of DS certificates, CRLs and CSCA
Master Lists for download to participants.

The goal of the service is to act as a central broker and thus minimize the
need for bilateral exchange. Currently there are 50 participating States[16].

The ICAO PKD data is publicly available for downloadﬁ in the LDIFFEI
file format from [17]].

3.4.2 EACPKI

Extended Access Control (see is a mechanism for role and privilege
based access control of sensitive data groups on the eMRTD. As the existing
eMRTD PKI has no concept of privileges or roles, EAC relies on an entirely
separate PKI. As is the case for the eMRTD PKI, each State issuing EAC
eMRTDs must also run an EAC PKIL

18Under a non-commercial, personal license.
11 DAP Data Interchange Files

30

BSI TR-03110 part 3 [5] specifies the PKI for EAC. It is, as shown in
Figure a three-tiered hierarchy consisting of these entities:

* Country Verifying Certificate Authority (CVCA)
e Document Verifiers (DVs)
* Inspection Systemﬂ (ISs)

These entities are closely related to the Roles defined for EAC in [12]:
CSCA/ DVDomestiC/ DVForeign and IS.

CVCA

2

DV DV

i€ i€

IS IS IS

o. 0| o.
',)N W

Figure 3.3: The EAC PKI hierarchy.

3.4.2.1 Country Verifying CA

The CVCA is the root trust-point in the EAC PKI. Consequently, each State
implementing EAC must establish a CVCA.

The CVCA issues Document Verifier certificates, which contain inform-
ation on exact EAC access privileges and the validity period for DVs. The
specification in [5] does not explicitly state specific validity periods for DV
certificates, but does say the validity must be short to diminish the con-
sequences of potentially stolen or lost terminals.

It is worth noting that the EAC CVCA and the eMRTD PKI CSCA
are two logically separate entities, operating in separate environments.
However, [5] states that they “MAY be integrated into a single entity”, but
must still use separate key pairs.

3.4.2.2 Document Verifiers

The purpose of the Document Verifier is to manage a set of terminals, i.e.
a border control inspection systemﬂ It does so by issuing IS certificates,

20 Also referred to as terminals.
21For consistency we refer to terminals as inspection systems or IS.

31

which means the Document Verifier is also a CA.

As previously stated the DV certificates granted by the CVCA contain
access privileges and a short validity period. The DV issues IS certificates
which contain a subset of these. In practical terms: IS certificates inherit the
access and validity of the DV certificate. The DV might also further restrict
access for an IS if so desired.

3.4.2.3 Inspection Systems

The Inspection System (IS) is the entity which performs EAC against the
EAC eMRTD. As stated in the IS holds an IS certificate. This
certificate is verifiable via the chain of CVCA and DV certificates from
which it was issued. The process of presenting this chain of Card
Verifiable Certificates to the eMRTD IC is a core mechanism in Terminal
Authentication (described in3.3.5.2)).

At inspection time (i.e. when performing TA) the IS must have access
to both the chain of certificates and the private key of the IS certificate.

3.4.2.4 Card Verifiable Certificates

The eMRTD IC must verify a chain of CVCA, DV and IS certificates during
Terminal Authentication. Due to the very limited computational power of
the ICs, however, the EAC specification in [5] elects to not use traditional
certificate formats such as X.509, but instead relies on Card Verifiable
Certificates (CVCs).

CVCs are designed explicitly to be easily processed on resource-
constrained devices such as smart cards. The ease of processing is achieved
through using the TL encoding with fixed fields. This makes parsing
significantly easier than for ASN.1 encoding (used for X.509), which
requires the device to keep more in-memory state while parsing.

EAC CVCs are defined in terms of the Role and Access Rights
(privileges) granted to the holder. These are encoded in the CVC itself,
as well as the validity period.

22Tag-Length-Value.

32

3.4.2.5 Cross State certification

DV

DVDomestic @ Foreign

§\ H DVForeign Q Domestic E

v

-

Figure 3.4: EAC PKI cross certification. State A provides State B with a
signed foreign DV certificate and vice versa. Each State uses both foreign
and domestic DVs to issue IS certificate /key pairs.

A core business case for eMRTDs is the verification of foreign documents
(e.g. border control of foreign nationals). For the base eMRTD PKI
described in 3.4.7] this is a matter of managing and distributing public
certificates. For EAC, however, the picture is a little different as privileges
are explicitly granted.

A CVCA grants access to a foreign State by issuing a foreign DV
certificate. The foreign State can, in turn, use the DV certificate to issue
IS certificates which grant access to sensitive data in the eMRTDs of the
other party. The implication for inspection systems is that it must hold a
DV certificate, IS certificate and IS private key for each foreign State for
which it has been granted access. From a PKI management point of view
the challenges are similar to those of the ICAO eMRTD PKI: effective and
coordinated management of certificates is needed.

Figure 3.4illustrates cross State certification.

3.5 Inspection procedures

In order to conduct inspection of an eMRID, twﬂ major steps are
performed:

1. Acquire the static access keys (MRZ or CANEI

23Due to the scope of this thesis we are disregarding physical checks, identity database
lookups and biometric authentication of the holder.
24Non access-protected eMRTDs not considered.

33

2. Carry out procedure between Inspection System and eMRTD IC.

The first is the preliminary acquisition of the static document access
keys. This is done either by optically reading the MRZ or manually reading
the MRZ or CAN and inputting it into the IS.

The second step encompasses the entirety of the procedure between the
Inspection System (IS) and the eMRTD IC: access control, reading data and
performing verification of the document.

The details of the IS-IC procedure depends on the supported features
of both. Due to the many varying eMRTD implementations with varying
security protocol support and LDS contents, there is no one inspection
procedure which covers all use cases. Therefore, the IS must actively
check for features during inspection time to decide what access and
authentication protocols to execute and what data to read out of the IC.

BSI TR-03110 [5], which is the adopted standard for EU EAC passports,
refers to this step as the Inspection Procedure, of which two major variations
are defined:

¢ Standard Inspection Procedure: for access to less-sensitive data
groups.

¢ Advanced Inspection Procedure: for access to less-sensitive and
sensitive data groups.

As defined by [5] which procedure to perform depends on the
compliancy of both the IS and the eMRTD to the standard. Compliancy in
this context refers to fulfilment of the BSI specification (EAC support) as
opposed to a system which only complies with the Doc 9303 standard (non
EAC).

Figure illustrates the flow of eMRTD inspection, including the
branching paths for the Standard and Advanced procedures.

34

PACE
available? —nNo

Yes J
v
[PACE [BAC l
Y
Active
Do EAC? ——No—»= Authentication n
available? j) o
No a
> | | 8
% Yes Yes =
S T } g
= Chip Active > D
Qo Authentication Authentication g-
5 S5
3 T
@ , : v o
g- Passive Passive 8
=) < Authentication Authentication =
0 ‘ S
o
8 A
o)
c 'I;]erm_lnal_ End
o q Authentication

Figure 3.5: The standard and advanced inspection procedures.

For simplicity the flowchart shows the access control and authentication
steps, but omits the actual reading of data groups. Also note that Passive
Authentication (PA) is a continuous process for most applications, where
data groups are verified as they are read.

Both procedures are preceded by successfully passing access control
through either BAC or PACE. Both the BSI and ICAO standards require
the IS to prefer PACE: BAC is only to be used when PACE is not supported
by the eMRTD.

3.5.1 Standard Inspection Procedure

In accordance with [5], the Standard Inspection Procedure is performed if
any of the following are true:

35

The eMRTD does not support EAC.

The IS does not support EAC.

That is, the Standard procedure is used whenever an eMRTD is only
compliant with the Doc 9303 specification and not the BSI EAC standard.
The steps defined for the inspection procedure are:

Access control (BAC or PACE).

Start Passive Authentication: read and verify SO,;. If PACE was used
verify EF .CardAccess against EF.DG14.

Optionally perform Active Authentication, where available.

Optionally less-sensitive data groups and verify against SO,; (con-
cludes PA).

3.5.2 Advanced Inspection Procedure

The Advanced Inspection Procedure is performed if both of the following
are true:

The eMRTD supports EAC.
The IS supports EAC.

In other words: the Advanced procedure is only performed when the IS
and eMRTD both support it. Additionally, for EAC to succeed the IS must
have the access to the appropriate certificate chain.

The steps are:

Access control (BAC or PACE).
Perform EAC Chip Authentication (omitted if PACE-CAM is used).

Start passive authentication: read and verify SO,. If PACE was used
verify EF . CardAccess against EF.DG14.

Optionally perform Active Authentication (redundant as we are
using CA and therefore typically not done).

Perform Terminal Authentication.

Optionally read less-sensitive and sensitive data groups and verify
against SO, (concludes PA).

36

3.6 Development

Recall form section that Doc 9303 evolved from an initial 1980s
publication of the standard.

The development is still ongoing and has in the case of eMRTDs left
a trail of technical debt in the form of multiple co-existing generations of
technology and standards.

The distinction for versions of the ePassport is made as generations.
At the time of writing the third generation ePassport is the last to be
standardized in Doc 9303, and the fourth generation standard is due in
early 2016.

1% gen 2" gen

[- - - >
2000 2010 2020 2030

Figure 3.6: The eMRTD generations timeline. The generations are
distinguished by the introduction of major technologies (BAC, EAC with
sensitive biometrics, SAC) into the standards.

The first generation ePassport standard was adopted by ICAO in 2003
and the first ePassports were rolled out by States starting in the mid-2000s.

This initial generation introduced the contactless IC containing the
MRZ, biometrics and signed Security Object.

It supported Basic Access Control for protection against eavesdropping,
mandatory Passive Authentication for data integrity and optional Active
Authentication for protection against chip substitution.

In 2006 the European Union asked all member States to include
a secondary biometric in their passports. Specifically the fingerprint
biometric was chosen, and the deadline to start issuing second generation
ePassports with fingerprints included was set to mid 2009.

The fingerprint (and iris, for that matter) was considered by the EU to
be highly sensitive, more so than the face biometric. From this it was clear
that the existing BAC protocol alone was not sufficient to protect access.
In part this was due to the general security level of BAC, but also because
enforcement of access levels was required: the secondary biometric should

37

only be accessed by authorized parties.

In answer to this the second generation of ePassports introduced
the Extended Access Control (EAC, see protocol to meet these
requirements. EAC is built on top of the existing protocol suite (BAC, AA,
PA) and introduced Chip Authentication and Terminal Authentication. The
latter employs a specialized EAC PKI to enforce access rules for the highly
sensitive biometrics.

The third generation of ePassports was brought forth with the intro-
duction of Supplemental Access Control. The EU decided that all member
States were to implement PACEv2 as per the SAC specification within the
end of 2014 [19]. Notably, for the third generation of ePassports SAC does
not replace BAC but is available alongside it. This coexistence was deemed
necessary to maintain interoperability and compatibility with inspection
systems.

The next evolution of the eMRTD is yet to be standardized at the time of
writing, but is expected to revolve around the inclusion of the new LDS2.
This new revision allows the writing of data post-personalization, intended
to support the use cases of digitally signed travel visas and stamps being
carried in the ePassport IC.

3.7 Implementations

The Doc 9303 [4] standard contains specifications for a wide range of
identity documents, including passports, travel visas and ID cards.

As stated earlier virtually all States issue ePassports today. In addition,
many implement the ICAO (and BSI) eMRTD standards in national identity
cards and residence permits.

This reuse of standards is obviously advantageous as it permits lever-
aging existing technical expertise and deployment infrastructure, as well as
providing interoperability with existing systems for enrollment and border
control.

In the following sections we review a few notable implementations of both
ePassports and elDs.

3.7.1 EU passports and Council Regulation EU/2252/2004

In Council Regulation No 2252/2004 [19] of December 2014 the EU estab-
lished that the ePassports of all member States should adhere to the a spe-
cification which includes the facial image, fingerprint and appropriate pro-
tection thereof, and that these should be implemented in an interoperable
format. ICAO Doc 9303 is specifically chosen as the standard for interoper-
ability and all EU passports and supporting infrastructure must therefore
comply with it.

The regulation has been amended in later times (2011, 2013) to adopt
SAC and EAC [5], making these mechanism mandatory for EU passports
issued in recent (and coming) years.

38

As a result of this the member States of the EU implement largely
interoperable ePassports.

3.7.2 The German Identity Card

On November 1% 2010, Germany started issuing their new electronic
identity cards (eID) to citizens.

R D RERUL IR DR shiaNs TeclliUde)
PERSONALAUSWEIS Name/Surname/Nom A

IDENTITY CARD / CARTE D'IDENTITE M USTERMANN
GEB. GABLER

Vornamen/Given names/Prénoms.

ERIKA
i “
12.08.1964

@m

31102020 938568

Interschrift der Inhahenn/ des Inhalbels i
dela

Geburtsort/ Pla¢ f

titulaire

TNz

Figure 3.7: The German elD card, from .

The German elD is a TD-1 type (credit card sized) Doc 9303-compliant card
which includes printed personal data and image of the holder, an MRZ and
a contactless chip (IC).

The IC implements three separate applications:

¢ ePass: mandatory. ICAO eMRTD with MRZ data, face image and
optional fingerprints. Data is protected by PACE and EAC. The
ePass is specifically for governmental use and is valid as a passport
substitute for travel (within certain States).

* elD: optional. General purpose identification storing personal data,
place of residence and so forth. Protected by a PIN an usable by
online as well as offline services.

* eSign: optional. Stores a signing key and certificate pair for creation
of electronic signatures. Allows citizens to sign electronic documents
using PIN and card.

This wide range of features is a result of the German vision for the eID
as a general purpose authentication token. It is coupled with an online
architecture for service providers to take advantage of the eID capabilities.

3.7.3 The Norwegian implementation

The EU decided in that the regulation should encompass the Schengen
Acquis, and due to this it is also applies to Norway. The Norwegian
Parliament sactioned this in 2005.

39

As a result the first Norwegian ePassport implementation was issued
from October 2005. These passports included the bare minimum of the
specification, namely DGs 1 and 2 protected with Basic Access Control and
Passive Authentication.

In April 2010 Norway introduced the new second generation ePass-
ports which included the fingerprint biometric. The Active Authentication
and Extended Access Control mechanisms were also added.

Starting from the 1% of January 2015 all passports were issued with
added support for Supplemental Access Control (PACEv2), which marks
the third generation of Norwegian ePassports.

A new Norwegian passport is planned for 2017 but does not contain any
technical changes from the 2015 generation (it is basically a visual update).

3.7.3.1 Norwegian eID

Work is currently ongoing to standardize the new Norwegian elqzj As
of now decisions have been made to align the technical specification of
elD with the Norwegian ePassport, meaning the eID will stricly follow the
standards set forth in the 7t edition of Doc 9303 [4].

This includes support for SAC and EAC. However, the decision on what
contents to include has not yet been reached. More specifically the choice
of whether the fingerprint biometric is to be included or not is still pending.

Issuance of the eID is due to start in 2017, aligned with the new
passports.

25“Nasjonalt ID-kort”

40

Chapter 4

Contactless smart cards

This chapter is a review of the smart card technologies most relevant to
ICAO eMRTDs. A biew overview of the relevant ISO/IEC standards is
given, as well a look at smart card file systems, the data interchange
protocol and secure messaging.

4.1 Standards

The ICAO eMRTD specification mainly relies on three separate ISO
standards: ISO/IEC 7816, ISO/IEC-1443 and ISO/IEC 7501.

4.1.1 ISO/IEC 7816

ISO/IEC 7816 is a fourteen part standard which concerns a host of various
smart card types and applications. Part 4 of the standard specifically deals
with the message interchange formats and data structures employed by
smart cards. The messaging protocols and data structures defined for
ICAO eMRTDs are based on this standard.

4.1.2 ISO/IEC 14443

The ISO/IEC 14443 standard specifies the communication interface for
contactless, “close proximity” smart cards. This includes the physical
RF interface, electrical characteristics and the low lever communications
protocols (PHY layer) and anti-collision mechanisms.

Cards complying with the ISO/IEC 14443 standard operate at a radio
frequency of 13.56 MHz and are defined to work within a card to reader
range of 10 cm. ICAO eMRTDs comply fully with ISO/IEC 14443.

4.1.3 ISO/IEC 7501

ISO/IEC 7501 is essentially a short form ISO endorsement of the ICAO
Doc 9303 standards for MRTDs. As such, ICAO eMRTDs also comply with
ISO/IEC 7501.

41

4.2 ISO/IEC 14443 and NFC

The physical communication interface for proximity smart cards is spe-
cified in ISO/IEC 14443. It is a four-part standard which establishes the
physical characteristics (part 1), RF interface (part 2), initialization and anti-
collision (part 3) and transmission protocol (part 4) of compliant systems.
ICAO Doc 9303 part 9 specifies that eMRTD contactless ICs should conform
to this standard.

There are two variations of ISO/IEC 14443: Type A and Type B. The
main differences between the two are in the coding schemes and modula-
tion methods. The transmission protocol is the exact same for both. The
specification allows eMRTDs to support either A or B, meaning inspection
systems must support both.

The RF interface for compliant systems is specified to operate at 13.56
MHz and allows for a data rate of 106 kb /s, both ways. The specified phys-
ical range of operation is approximately 10 cm between card and reader.

The transmission protocol is a half-duplex block transmission scheme,
which is given in part 4 of the standard.

4.2.1 Near Field Communication

Near Field Communication (NFC) is a near-field wireless connectivity
technology, standardized by the NFC Forum. In essence, NFC incorporates
and extends a range of existing protocols for near-field communication in
order to provide a common set of protocols and services.

NFC provides bidirectional communication between devices with three
main modes of operation:

¢ Card emulation - allowing devices to act as contactless smart cards.

e Reader/writer - the device acts as a terminal, able to read contactless
smart cards.

* Peer-to-peer - two devices communicate directly with each other.

At its core NFC uses key components of the ISO/IEC 14443 standard,
making NFC devices fully compatible with ISO/IEC 14443. Thus eMRTDs
are compatible with NFC devices running in reader/writer mode. Also,
a compliant eMRTD could be implemented on an NFC device using card
emulation.

NFC capability is deployed in a range of consumer devices such a
mobile phones, game consoles and laptops. Initially the use cases for NFC
in such devices were rather simple, such as reading basic RFID tags and
performing an action (e.g. opening a web page or connecting to a network).

42

Today, however, NFC has evolved to be the de-facto standard for near-
field communication in consumer devices and has found more advanced
applications such as mobile payment solutions and identification. Both
Apple Pay and Android Pay are examples payment solutions built on top of
NFC. Much due to the growth of these services, virtually all modern smart
phones are now NFC capable, as well as range of other devices.

4.3 Smart card file systems

ISO/IEC 7816-4 specifies three types of files for smart cards: the Master File
(MF), Dedicated Files (DF) and Elementary Files (EF).

MF
I |
DF EF EF
|

EF DF
|
EF EF

Figure 4.1: ISO/IEC 7816-4 file tree.

The Master File acts as the root directory of the file system. There can only
be one MEF, and it contains all other directories and files. It is required by
the standard to be present in all smart cards.

Dedicated Files act as sub-directories of the MF, which is why they’re
also known as Directory Files. A given DF may contain any number of DFs
or EFs, allowing an arbitrary depth file tree ﬂ

Elementary Files are the base element of the file system, much like the
files in a UNIX file system. They are stored directly under a DF or the ME.
The layout of a file employs one of four schemes: transparent, fixed record,
variable record or cyclic. In any of these cases the layout of the actual con-
tents is out of scope of the standard and is application specific.

Two types of EFs exist: working EFs, which are used for data accessible
only by the outside world, and internal EFs, which are used solely by the

n practice the file tree depth is limited by the memory of the device and deeply nested
file trees are very uncommon.

43

application/OS itself. The latter might also contain application secrets such
as cryptographic keys, and access is therefore protected by the smart card
OS.

Referencing a file is done either by a two-byte file identifier (FID), or by
a path (concatenation of FIDs). An FID is required to be unique within a
DE.
There are also 5-bit Short FIDs, which are used for file reference within the
context of a command.

4.4 Commands

Communication between a smart card and a terminal is achieved through
simple commands known as Application Protocol Data Units (APDUs). The
structure of an APDU is defined by ISO/IEC 7816-4.

Two types of APDUs exist, the command APDU and the response APDU.

44,1 Command APDU

A command APDU is sent by the terminal to the card. It consists of a 4-byte
header and a variable size data field (0 to 216 bytesﬂ

Field ‘ Bytes ‘ Description

Header
CLA 1 Class of instruction
INS 1 Instruction code
P1 1 Parameter 1
P2 1 Parameter 2

Command data
Lc | 1or3 | Bytelength of the data field
Data | Lc | Arbitrary byte string

Le | 1or3 | Maximum expected length of the response data field

Table 4.1: The Command APDU format.

4.4.2 Response APDU

Response APDUs are sent by the card to the terminal. They are always
direct responses to command APDUs.

There is no header for the response APDUs, they simply contain a 0 to 216
byte data fiel followed by two mandatory status bytes, SW1 and SW2.

2A standard sized APDU will allow for a maximum of 256 bytes of payload data. The
216 bytes figure requires support for Extended Length APDUs.
3See footnote

44

The status bytes indicate the status of the processed command whilst the
data field contains the response data, if any. The exact meaning of a
status word is specific to the vendor and/or application, though there are
common conventions for prefixes indicating certain conditions. The only
truly protocol agnostic status word is the OK SW: 0x90 0x00.

Field \ Bytes \ Description
Response data
Response data | 0-2'° | The response
Trailer
SW1-5W2 \ 2 \ Command processing status bytes

Table 4.2: The Response APDU format.

4.5 Secure Messaging

ISO/IEC 7816-4 defines a Secure Messaging (SM) protocol which provides
privacy and integrity of the APDUs exchanged between a card and reader.
SM establishes a secure channel by bilateral derivation of session keys Kgnc
and Kmac.

Once the secure channel is established all subsequent APDUs being
exchanged are encapsulated as an SM message. The plain APDU itself is
embedded in the SM APDU as an encrypted payload alongside a MAC of
the contents.

Optionally, the two parties in SM share a common Send Sequence Counter
(SSC) which is incremented and prepended to each message. The use of an
SSC is a preventive measure against message replay attacks.

The SM protocol defined in ISO/IEC 7816-4 is designed to be very flex-
ible and the actual implementation varies considerably between applica-
tions. ICAO Doc 9303 specifies SM using AES or 3DES in CBC mode with
3DES Retail MAC or AES-CMAC, respectively. The BAC, PACE and CA
protocols are responsible for establishing the SM session, and an SSC is
always used.

45

46

Chapter 5

Android

Android is an operating system (OS) developed by Google Inc. It is
designed first and foremost for mobile, touch-screen devices such as
smartphones and tablets, but also supports various other uses such as set-
top boxes (Android TV) and cars (Android Auto).

Though internally developed at Google, the source code of Android is
available under an open source license, making Android the only major,
open source mobile platform. It is notable, however, that most Android
devices ship with both open source and proprietary components.

As of the end of 2015 Android held an 80% share [22] of the mobile OS
market.

In this chapter we give a brief introduction to Android from an app

developer’s perspective. We review the OS architecture, look at the
fundamental development tools and outline the application model.

5.1 Architecture overview

Apps Applications (1stand 3" party)

Content providers, Services,

Android Framework)
Managers, view system

Native libraries Android Runtime (ART) Core libs, ART, Dalvik VM
Hardware Abstraction Layer (HAL) Audio, camera, storage, 1/0
Linux kernel Drivers, power management

Figure 5.1: The Android software stack.

At its core Android is based on the Linux kernel. On top of this is a
Hardware-Abstraction Layer (HAL) which provides a hardware-agnostic
interface between the kernel and upper layers of the stack.

47

Above the HAL is the Android Runtime (ART) and user-space native
libraries and middleware (much like a traditional Linux or UNIX system).
ART is Android’s application runtime which handles ahead-of-time com-
pilation and execution of Java byte code.

The Android Application Framework defines a set of APIs which bridge
the gap between Android applications (apps), low-level system services
and ART. It comprises the higher level services and managers which all
Android apps, from both first- and third-parties, depend on.

5.1.1 Security model

The security model of Android is at the core inherited from Linux, but also
extends on this and implements key security mechanisms which don’t exist
in traditional Linux OS distributions.

Some of these features are:

* Mandatory app sandboxing: each app has its own Linux user ID
(UID), runs in a separate ART runtime (process) and has its own
storage tied to the UID (inaccessible to all other users).

¢ Explicitly granted app permissions: access to system services must
be explicitly requested by the app. For security sensitive services such
as the camera, network or external storage, permission must also be
explicitly granted by the user.

5.2 Android software development

Android application code is written predominately in the Java program-
ming language, but apps can also include native code such as compiled C
or C++ libraries. Additionally, third party tools exist to facilitate develop-
ment of Android apps in a range of other languages such as Java bytecode
based languages (Kotlin, Groovy) or web technologies (JavaScript, HTML).

In addition, user interface components (views) are declared in XML files
(but can be created programmatically as well), which are transformed to
binary XML at compile time.

Apps are packaged and distributed as APK files which are essentially
portable archive files containing the compiled code, binary XML files and
other assets of the app.

As such, Android loosely follows the “Write once, run anywhere”
philosophy of Java, though incompatibility between hardware, OS versions
and application code is often an issue.

5.2.1 Android SDK

The Android Software Development Kit (SDK) is the official SDK for
Android development. It includes the tools needed for compiling,
packaging and debugging Android apps on all popular desktop OSs.

48

In addition to the core SDK libraries the optional Support Library offers
a host of APIs and components intended to aid developers in maintaining
backwards-compatibility across different releases of the Android SDK for
their apps.

5.2.2 Android Studio

Google develops and distributes an official IDE for Android named Android
Studio. It is based on the Intelli] technology by JetBrains. However,
a number of alternatives exist including Eclipse and Netbeans. Neither
are required, though, and only the SDK is strictly needed for Android
development.

5.3 Application model
An Android app is made up of four component types:

* Activities: a single screen with a user interface. All apps which
display a user interface must have at least one activity but typically
all self-contained tasks are defined as separate activities.

* Services: runs in the background to perform long-running operations
or to facilitate communication with remote processes.

* Content providers: manages persistent storage and data sharing
across apps.

* Broadcast receivers: responds to system-wide broadcasts, such as
system events or broadcasts initiated by apps.

Figure 5.2|shows a simplified overview of the runtime relation of compon-
ents in a typical app.

Application context [Libraries
) b .
Current activity context Content providers
Services

Fragment stack

View Activity stack

Figure 5.2: A somewhat simplified overview of a typical Android
application process.

49

5.3.1 Life cycles

Mobile devices are subject to completely different use cases than traditional
computers. They are frequently put into and awoken from sleep, they
have subsystems which run regardless of process state (e.g. networking)
and they are very limited in terms of power, memory and computational
resources.

The practical implication of this on Android is that an activity must be
aware of sudden context changes, and must be designed to be somewhat
“pausable” or even suddenly killed when put into the background.

In order to manage this the Android framework has a concept of life
cycles. Life cycle events are emitted by the system upon an activity launch-
ing, pausing, closing, resuming and so on. Activities must therefore imple-
ment a series of life cycle callbacks in order to manage themselves across
all of these states.

From an application developer’s perspective this means developing An-
droid apps is very different from most other systems: the application
state must be manually committed to memory and restored on demand
and long-running processes must be carefully managed to avoid execution
threads leaking.

5.3.2 Storage

The Android framework offers a selection of built-in storage options for
apps:

* Internal Storage: app-private file storage on the internal device
storage.

¢ External Storage: public data storage on the external device memory
(typically an SD card).

* Shared Preferences: non-relational storage of simple data as key-
value pairs. Typically used for storage of app settings. Data is
persisted to an XML file in internal storage.

¢ SQLite Database: SQL database for transaction-safe storage of
relational data. SQLite databases are stored in internal storage.

50

Chapter 6

Related work

This chapter reviews a selection of related works in order to contextualize
our own work and contributions.

We first give a survey of a small selection of relevant academic works,
then look at open source software within the field of eMRTDs and at last
we give a brief survey of proprietary products.

6.1 Academic works

Many academic works exist within the field of ePassports, eID and the
supporting technologies. However, most of these deal with formal security
analysis or biometric authentication techniques and only a select few
consider the practical design and implementation of systems.

In this section we present this small selection of academic contributions
which we consider to be related or tangential to our work.

In [23] Stein presents a prototype implementation of an NFC smart-
phone based elID reader. The implementation is focused on using Trusted
Execution Environments for security, demonstrating not only that an eID
reader on commodity devices is realizable, but also that it can be done with
strong security. The prototype presented supports the German eID, which
is related to (and has many technologies in common with) EU and ICAO
ePassports.

In [24] Terdn and Drygajlo explores the implementation of inspection
systems (IS) for biometric passports. Their approach is the implementation
of a Java based inspection system conforming to the ICAO eMRTD
standards, implementing Basic Access Control. They also discuss the
implementation of an ICAO ePassport applet on the JavaCard platform,
which is used as a tool for evaluation of their system. The resulting IS can
thus be used for inspection of emulated as well as real eMRTD smart cards.

Perhaps closest to our project is the Master’s thesis of Voscek [25]. It
describes the implementation and evaluation of an Android NFC based
app for reading biometric passports and performing facial recognition of
the holder. The prototype implementation does MRZ scanning, extracts

51

the face biometric and compares it to a photo of the holder using facial
recognition techniques.

6.2 Software

A wide range of both commercial, non-commercial and open source
software products exist within the realm of eMRTDs. Most are fairly
peripheral to our project, some implement similar functionality and some
are in fact integrated into our implementation as software dependencies.

6.2.1 Open source libraries and applications
6.2.1.1 JMRTD

JMRTD is an open source Java library which aims to implement the Doc
9303 and BSI TR-03110 MRTD standards for many applications. It is by far
the most complete open source implementation. It consists of:

* AJavaCard “passport applet” which allows the user to create their own
passports.

* A general purpose host side API for accessing eMRTDs. This
includes functionality for the low level communication, performing
authentication reading data and verification of documents.

* Supportive libraries for decoding and encoding the image formats
(WSQ, JPEG 2000) commonly found in eMRTDs.

The project was initially started in 2006 as part of a research project by
the Digital Security Group at Radboud University in Nijmegen, Holland.

Over the course of the next decade many additions and changes have
been made. The support for EAC was added in 2009, and support for
CBEFF-encoded data groups was added in 2011.

The current version (JMRTD 0.5.6) supports all of the ICAO and
BSI specified security protocols, but the implementations of the newer
additions such as PACE and the EAC protocols are not yet feature
complete.

An initial Android port of JMRTD was made in 2011 along with a (very
rudimentary) sample app. In later years the Dutch company Novay created
and released a closed source proof-of-concept Android app (2013) which
inspects eMRTDs and another company, InnoValor, has been actively
developing a proprietary JMRTD based, document verification system (see
6222).

JMRTD is licensed under the GNU Lesser General Public License
(LGPL) and is available from https://sourceforge.net/projects/jmrtd/.

52

https://sourceforge.net/projects/jmrtd/

6.2.1.2 Animamea and Androsmex

Animamea is an open source Java library for EACv2 as defined in
[5]. It includes PACE, Chip Authentication and Terminal Authentication
implementations. The project is licensed under LGPL and is available from
https://github.com/tsenger/animamea.

Androsmex is another project by the Animamea author. It is an Android
NFC implementation of PACE which is built on top of the Animamea
project. The current version is labelled as “early alpha” and claims to only
have been tested with the German elD card. It is LPGL licensed and can be
downloaded from https://github.com/tsenger/androsmex.

6.2.1.3 The PersoSim project

PersoSim is an open source multi-component simulation framework for the
German eID card. The main use case of the project is to provide a simulated
elD card for development purposes, as opposed to working with sample
cards. A full implementation of BSI TR-03110[5] is provided.

The project also contains tools for setting up virtual elD readers based
on the BSI TR-03119[26] specification, which aims to aid development by
diminishing the need for costly hardware.

The PersoSim development is led by HJP Consulting GmbH on
commission from the German Federal Office for Information Security (BSI),
which is the sole sponsor of the project. The BSI hopes that providing the
PersoSim tools will aid third-parties in developing services and systems
which leverage the eID, as well as having applications for further internal
development of the elD infrastructure.

The PersoSim project is licensed under the Gnu General Public License
(GPL) and is available from http://www.persosim.de/.

6.2.1.4 OpenPACE

OpenPACE is a project which implements Extended Access Control as
specified in BSI TR-03110[5]. It includes libeac, which implements the PACE
protocol as well as the EACv2 protocols (Chip Authentication and Terminal
Authentication). Additionally the project includes tools for working with
Card Verifiable Certificates, which are used for the EAC PKI.

The libeac library is made to be portable and is written in C. However
the project provides API bindings for a host of programming languages
such as Python, Ruby, Java and JavaScript.

OpenPACE is licensed under the GPL license and is available from
http://frankmorgner.github.io/openpace/.

6.2.1.5 EJBCA

EJBCA is a widely used, open source PKI Certificate Authority (CA)
developed by PrimeKey Solutions AB. It is a large, modular, enterprise-
grade Java application which offers features allowing implementation of a
complete PKI.

53

https://github.com/tsenger/animamea
https://github.com/tsenger/androsmex
http://www.persosim.de/
http://frankmorgner.github.io/openpace/

Among the many supported PKI technologies, EJBCA includes a
complete implementation of the EAC PKI (also known as the EU ePassport
PKI) and Card Verifiable Certificates. Thus, EJBCA is the only open source
solution for setting up an EAC CAH

6.2.2 Commercial and proprietary software

There are many commercial providers offering proprietary software solu-
tions for eMRTDs, from manufacturing of the document itself to PKI and
inspection software. Such solutions are built and tailored for a specific
implementation and are not usually available to the general public as
products.

The following sections present a small selection of notable, proprietary
software products.

6.2.2.1 Universal Reader Tool

The Universal Reader Tool (URT) is a desktop application for inspection of
eMRTDs and European driving licenses.

For eMRTDs, it supports the third generation ICAO eMRTD standards
(PACEv2) and EU ePassports (EAC).

First and foremost intended as a tool for aiding interoperability
testing, development of URT is sponsored by several parties including
the French government and commercial actors like Gemalto and Oberthur
Technologies.

The software can be downloaded free of charge from http://www.
keolabs.com/universal _reader.html.

6.2.2.2 InnoValor ReadID

The Dutch company InnoValor develops and licenses the newly announced
ReadID software. In short, ReadID offers an all-around solution for
leveraging electronic identity documents (eMRTDs, elDs). This includes
software APIs for client side inspection of documents (on Android using
OCR and NFC, similar to our project) and server side solutions supporting
this.

A sample Android app demonstrating the technology is available from
Google Play under the name ReadID - NFC Passport Reader. ReadID is
owned and developed in part by the author of JMRTD.

n case you want to start your own country.

54

http://www.keolabs.com/universal_reader.html
http://www.keolabs.com/universal_reader.html

Part 111

MRTD Inspector

55

Chapter 7

Design

In this chapter we present the high-level design of our Android eMRTD
inspection system, the MRTD Inspector app.

First we present our system requirements, then the the envisioned user
interface and activities of the app, and at last an outline of the system
components.

7.1 System requirements

We need to form a set of requirements for our system. The requirements
are first and foremost constructed for the purpose of guiding the project
towards our goal, and since we are taking an iterative and experimental
approach to our process they are not necessarily strictly followed.

711 Guiding requirements

Our requirements are governed by a small set of guiding requirements
which have been given by POD:

1. The prototype implementation should be developed as an Android
app.

2. The app should aim to demonstrate the feasibility of an Android
based eMRTD inspection system.

3. The app should leverage the built-in NFC functionality of the
Android phone to communicate with the eMRTD.

Due to the nature of the project and the software development philosophy
of the implementers we define the following additional guiding require-
ments:

1. Only free and open source software can be used in the implementa-
tion.

2. If possible, the prototype should be released under a permissive open
source license.

57

7.1.2 Overview of features

From our review of the ICAO Doc 9303 [4] and BSI TR-03110 [5] in
chapters[2]and 8| we recognize two key components to performing eMRTD
document inspection:

¢ Acquiring the static document access keys through OCR or manual
input.

* Performing the Standard or Advanced inspection procedure as
outlined in 3.5

Our app should therefore offer these two main features:

¢ OCR scanning of the MRTD MRZ.

¢ Inspection of the MRTD over NFC.
Additionally we need the following supportive features:

* The user should be able to configure the app for experimental use
cases (i.e. select protocols to use).

¢ The app should allow the user to install certificates and keys (where
applicable) for the ICAO and EAC PKIs.
7.1.3 MRZ OCR reader
The MRZ OCR reader should follow these requirements:
1. The reader uses the back-facing camera of the Android smartphone.

2. OCR techniques are employed to search a continuous stream of
images from the camera for a valid two-line (TD3) MRZ.

3. The user should be given visual feedback of the recognition process
to aid in capturing optimal images.

4. Upon detecting a valid MRZ the contactless inspection process is
launched with the acquired credentials.

5. To aid operation in low-light situations the option to turn on the
smartphone torch (using the camera flash) should be given.
7.1.4 Contactless inspection

The contactless inspection should be able to perform both the Standard and
Advanced inspection procedures, which means supporting the following
protocols:

1. Basic Access Protocol (BAC).

58

2. Password Authenticated Connection Establishment (PACEv2) as
defined by SAC[15].

Passive Authentication (PA).

Active Authentication (AA).

AN SR

Chip Authentication (EAC-CA).
6. Terminal Authentication (EAC-TA).

The following additional requirements must also be met:

1. Visual feedback should be given to the user during the inspection
process.

2. In case of inspection failure the process should be gracefully aborted.

3. The less-sensitive and sensitive (where possible and applicable) data
groups should be read.

4. Upon successful inspection the user should be presented with the
data read from the MRTD, the features supported by the IC and the
result of the verification process.

7.1.5 Configuration

To aid its usefulness as an experimental tool the app should be configur-
able. The following settings are needed:

—_

. Adjustable timeout for the NFC communication (milliseconds).
2. Enable/disable forcing BAC authentication for SAC documents.
3. Enable/disable running BAC is PACE fails.

4. Enable/disable Passive Authentication.

5. Enable/disable Extended Access Control (CA and TA).

In addition to these settings the app must support the following:

1. Installing a CSCA Master List for document verification. CSCA
Master Lists in the binary format, such as those offered as public
downloads by the German BSI, should be supported.

2. Installing CVCA certificate chains and IS private keys for EAC.

59

7.1.6 Quality requirements

The requirements listed so far are all functional. However, functionality and
utility in and of itself is only half the picture of building a serviceable IS.

Obviously, the real world usefulness of a mobile IS is dependent on the
functionality being in place, but must also perform inspection reliably and
quickly. Therefore, we need to consider our requirements for performance
and reliability.

It is worth noting that “quality” pertains to a wide range of measures,
but because we are implementing a prototype many of these are disregarded
and we selectively focus on the performance and reliability of performing
inspection.

7.1.6.1 Expectations

In order to set our requirements for performance and reliability, we must
first determine the expectations. For the case of reliability this is trivial,
as the expectation is obviously that the system functions in all reasonable
circumstances.

The question of performance, however, is not as straight forward. There
is no official “golden standard” determining the duration of the inspection
procedure, and information on the subject is scarce.

In order to reach an approximation, however, we have conducted a brief
and informal survey of commercial systems to try and deduce reasonable
estimates for the following:

* Duration of MRZ scanning.

* Duration of the contactless inspection procedure.

Unfortunately, though there are many vendors in the eMRTD market not
many release such specifications to the public, and when they do they are
usually rough approximations written in a product sheet. A few of the
notable figures we found are:

¢ The Diletta TDR700 [27] claims MRZ recognition time in 1 second and
contactless inspection of BAC + EAC ePassports in 2 seconds.

* The Morpho Ideal Pass™ solution is claimed to perform electronic
inspection in 3 seconds (SAC + EAC).

* The German BSI reports that their EasyPASS automated border
control system performs the optical + contactless inspection in 5-6
seconds.

It should be recognized that these numbers are highly inaccurate. As poin-
ted out by the vendors themselves: the duration of contactless inspection is
dependent on the contactless IC and the also the size of the contained data.
We should also assume that the vendors are reporting “best case” figures,
as they are taken from product sheets and not scientific publications. As

60

such, the 5-6 second inspection time reported for the German ABC-solution
might be closer to reality.

7.1.6.2 Forming the requirements

Pertaining to the approximate figures found in the previous section, we
can reasonably assume such as system to perform the inspection (MRZ and
contactless) in the 3-6 second range.

However, we must also consider that these systems are designed for a
very different environment and purpose than ours. First, they are made for
volume, meaning optimization of the inspection time is paramount in order
to reduce queues at border control, governmental offices and so on. Second,
they are not mobile systems, and our system is not setting out to directly
compete with the performance of stationary border control systems.

We did not find comparable figures for the mobile commercial solutions
on the market, but one could expect them to perform somewhat slower
than their stationary counterparts.

Another aspect to consider is the practical tolerance for the duration of
inspection. That is, what would be an acceptable inspection time in a
mobile scenario? It might not be reasonable to expect the mobile IS to
perform like a stationary one, so there is obviously a trade-off between
performance and convenience to consider.

For our specific project no figures have been concretely established
by POD for this, but they have given indications. In [28] the following
question is posed:

“When and how can we conduct a complete ID verification in 10
seconds on a cold winter’s night?”

From [28], translated from Norwegian

Taking this question at face value, considering the precedent set by com-
parable systems and also considering that we are designing a prototype
(which will not strive for perfect optimization), we define the following
requirements for performance:

¢ The MRZ should be scanned and recognized in approximately 2-3
seconds.

¢ The contactless inspection should be performed in approximately 10
seconds.
7.1.7 Limitation of scope

The overarching goal of the project is to demonstrate the feasibility of
an Android app eMRTID IS, and to use this to identify limitations and
advantages to such a system. Our chosen approach is the design and

61

implementation of a rough prototype, which means we are selectively
disregarding many potential requirements to a real-world implementation
of such a system. Specifically:

* As we only have access to a limited set of TD-3 type ePassports, and
no other eMRTDs, we create our prototype solely with these in mind.
That is, support for non-passport eMRTDs is disregarded.

* Security of the implementation is not a focus.

¢ Support for multiple models of devices and generations of software
(i.e. Android version backwards compatibility) is not regarded.

* The user experience comes second to under-the-hood implementa-
tion.

7.2 User interface and activities

Fox, Samuel

NATIONALITY: Utopian

DOB: 1973-04-01

SEX: Male

o

Reading document...

1000000018NOR7304017M1903267<<<<<<LLLLLLL<04

Figure 7.1: Overview of the app’s main activity.

The main activity of our app is the inspection of eMRTDs. We define a
three-step process for this, as illustrated in Figure

A: Capture the MRZ using the phone camera.
B: Perform the contactless inspection.

C: Display the result of the inspection.

For effective inspection the app guides the user through these steps fluidly.

Additionally, we provide a manual entry method for step A, an activity
for managing certificates and a configuration screen. Mock-ups of these are
shown in Figure

62

Country A Timeout - 10000 ms
Country B

Country C
Force BAC
1234abcd

Passive Authentication

1973-04-01 ov Extended Access Control

IS /1S private key
2019-03-26

Cancel oK

Import

Figure 7.2: Manual credential entry (left), certificate management (middle)
and configuration (right).

7.3 System architecture

Our system architecture is comprised of multiple modules, coupled with
varying degrees of tightness. We choose this approach with the prospect
of creating more scalable and maintainable software. Also, modularization
should result in a set of reusable and repurposable components, making
our software easier to modify and integrate into other systems (for
ourselves and for third parties alike).

Figure|7.3|is a high-level overview of the architecture of our proposed
design.

63

App core
Ul activities Services Vo
Certificate Credentials Configuration OCR |, c
manager manager manager service | —| ~amera
MRTD |
MRZ) reader |~ | NFC
scanner Reader View MRTD service
A
4
Storage

—)
(File ()
storage Presfzziges

Figure 7.3: Overview of the system architecture and its components.

7.3.1 UI activities

Our user interface as shown in consists of a range of single-purpose
user activities or screens. From an architectural viewpoint these collectively
make up the Ul of our app. They also reflect the features specified in our
requirements.

7.3.2 Application services

We design our core services, the OCR engine (for MRZ recognition) and
the MRTD reader service (for NFC communication with the MRTD IC),
as singleton components which exist outside the activity life cycle. This
is necessary to keep complexity of the activities down and to allow the
services to live on through life cycle events.

For example: we cannot have the MRTD reader process be killed due to
a screen rotation, but rather want the reader to continue working and the
reader activity to reattach itself upon being resumed.

7.3.3 Storage

Various forms of persistent storage is needed for multiple parts of our
system. Namely:

¢ File storage for keeping installed certificates.
* Shared preferences for keeping app configuration.

¢ Database for keeping records for the credential manager.

64

As we are not interested in sharing state with external apps and, in fact,
wish to keep stored data private we only use the internal storage mechanism.

65

66

Chapter 8

Implementation

In this chapter we introduce our prototype Android app which we have
called MRTD Inspector.

The app is a realization of the system requirements and design pro-
posed in Chapter [7] and its implementation constitutes the main body of
practical work in this Master’s project.

We start the chapter by reviewing and rationalizing our choices of
hardware and software components for our prototype.

The next section presents an overview of key components and the
choices made in their implementation.

This is followed by two sections giving special attention to parts of
the implementation which proved particularly challenging, and also a
short summary of specified features which were for various reasons not
implemented.

Finally, a short presentation of MRTD Inspector from a user’s perspect-
ive is given.

()

|y

Figure 8.1: The MRTD Inspector app icon.

8.1 Hardware and software used

In the subsequent sections we give an overview of the hardware and third-
party software components used in the implementation of the app.

8.1.1 Hardware

As stated in our system requirements we consider implementing support
for a wide range of devices out of scope for our prototype. Therefore,

67

the hardware used in our work consists solely of a select few Android
smartphone models. These phones have been used as our development
targets throughout the project and are also the devices we have used to
evaluate our prototype.

The devices are shown in Figure[8.2Jand Figure[8.1]is a summary of their
respective technical specifications.

_—

al W 420 /
PM
- 6:00 |
\ TUESDAY /
\ MAY 27
AN /

F

N7

Figure 8.2: The development devices. From left: Google Nexus 4, LG G3
and Google Nexus 5X. (Images sourced from the manufacturers).

Model Year | OS | Chipset NEFC chip
LG Google Nexus 4 | 2012 | 5.1 | Snapdragon S4 Pro | BCM20793
LG G3 2014 | 5.1 | Snapdragon 801 NXP PN547
LG Google Nexus 5X | 2015 | 6.0 | Snapdragon 808 NXP PN548

Table 8.1: Technical specifications of the development devices.

From an application development perspective our small selection of
devices are not all that different. They all run fairly recent versions of
Android, allowing us to avoid considering backwards compatibility in our
code base. In this sense, using a single device would actually suffice.
This rings especially true when taking into consideration that the Android
emulator (which comes with the Android SDK) allows us to spin up a
virtual instance of any of a large range of devices on demand.

This is not the case for our app, however, as our core functionality is
wholly dependent on the presence of an NFC interface, and we are testing
our implementation with real (as opposed to emulated) ePassports.

In fact, having three different physical devices, of three different
generations and, in particular, containing three different NFC controllers
has shown to be a very useful tool to reveal limitations of our prototype.

68

Ultimately, the Nexus 5X has been our main development target for
the majority of the project duration. This is simply due to our experiences
showing that it offers more stable NFC performance than the other devices.

8.1.1.1 Hardware requirements

Though development has targeted the aforementioned devices specifically,
Android apps are not device dependent and it should be more than
possible to run MRTD Inspector on many other devices.

Table lists the minimum technical requirements for running the
prototype.

OS version 5.0 (Lollipop)
Display resolution | 1280 x 720

Camera resolution | 1280 x 720
Required features | Camera2 API, NFC

Table 8.2: Minimum specifications required for MRTD Inspector.

8.1.2 Third-party software

As is the case for most non-trivial software projects we employ a large selec-
tion of third-party libraries and components in our implementation. Some
are used for peripheral purposes, such as pre-made user interface compon-
ents and utility libraries, some are essential framework components and
some are fundamental to the implementation of MRTD inspection.

The following sections present the third-party libraries which are
fundamental to our implementation, what they are used for and how. It
is as such not a complete list of third party components.

8.1.2.1 JMRTD

JMRTD is an open source, pure Java library which provides several MRTD
related components, including an eMRTD JavaCard applet, libraries for
encoding and decoding biometric image formats and a host side API for
accessing eMRTDs. A more detailed overview of the JMRTD project and
library can be found in

Our entire implementation of eMRTD contactless inspection builds
directly on top of the JMRTD 0.5.6 API, and the so-called host-side API it
is used to handle low level connection, security protocols and reading of
data.

In addition to binding to this version of the library we have backported
a select few classes relating to certificate handling from version 0.5.0 (which
have been removed from more recent releases).

8.1.2.2 Java security, Bouncy Castle and Spongy Castle

The security APIs built into Java (the java.security package) are made
to be modular and portable across a range of devices and platforms. As

69

such, it uses the Provider framework to facilitate the use of platform- or
application-specific implementations.

For example, when wishing to use a specific cipher the code does not
directly bind to an implementation, but rather resolves one through the
javax.crypto.Cipher API, like so:

Cipher cipher
= Cipher.getInstance ("AES/CBC/PKCS5Padding") ;

Under the hood of this operation the installed security providers are
searched for an implementation of the cipher. If a suitable implementation
is found the object is instantiated and returned, and if not an Exception is
thrown.

As stated, the list of available security providers, and what crypto-
graphic algorithms they support, varies with platforms and devices. An-
droid is no exception to this.

Android ships with a small selection of first party providers, offering a
rather limited list of supported algorithms.

For our purposes it is therefore necessary to install a third-party security
provider which offer implementations of the algorithms used in PACE,
BAC and so on.

In fact, JMRTD already relies on Bouncy Castle [29], which is a third-
party cryptography library and Java security provider.

However, one of the bundled security providers in Android is, un-
fortunately, a stripped-down version of Bouncy Castle. The result is a
namespace conflict causing JMRTD and Bouncy Castle itself to malfunc-
tion in certain circumstances when run on Android.

As the Bouncy Castle namespace conflict is a well-known issue on Android
there is also a well-known solution: Spongy Castle [30]. This is a
repackaging of Bouncy Castle so as to avoid namespace conflicts by moving
packages from org.bouncycastle.* to org.spongycastle.*. We use the
Spongy Castle security provider in our app, as well a selection of the
supportive APIs, such as the org.spongycastle.asni package.

Because the compiled JMRTD library distribution (jar-file) already ships
with org.bouncycastle.*, however, the conflict is not solved by using
Spongy Castle alone, and modificatiorﬂ of the JMRTD jar-file is necessary
before importing it.

We do so by using the Jar Jar Links [31] command-line utility to switch
the package name within the compiled library:

! Alternatively one could modify the source code and re-compile the library.

70

$ java -jar jarjar.jar process org.bouncycastle.*x* org.
spongycastle.@l jmrtd-0.5.6.jar jmrtd-spongy-0.5.6.jar

As a result we use Spongy Castle and so does the JMRTD jar used,
meaning we avoid the aforementioned namespace conflict.

8.1.2.3 EJBCA cert-cvc

EJBCA is an open source, enterprise grade Certificate Authority which
includes support for the EAC PKI. More details on the project is provided
inf6.2.1.5

One of the components of EJBCA is the cert-cvc library. It comprises a
full Java implementation of Card Verifiable Certificates (CVC) as well as a
selection of supportive CVC utilities.

Our implementation relies on cert-cvc for parsing and format conver-
sion of CVCs.

8.1.2.4 Tesseract OCR and tess-two

Tesseract OCR is an open source OCR engine. It was originally developed
by Hewlett-Packard in the 1980’s to 1990’s, open sourced in 2005, and
development is now sponsored by Google (since 2006). It is widely
considered to be the most accurate open source OCR engine [32].

At the core of Tesseract is libtesseract, which is a cross-platform
library written i C/C++, but API wrappers are available for many
programming languages, including Python, PHP and Java.

Implementing character recognition with Tesseract requires training
the engine to suit the particular use case (typeface, language, printing
media). This is done through a multi-step process which comprises feeding
carefully crafted sample data to the training tools, producing a range of
training files to extract the relevant parameters and ultimately producing
what is known as a traineddata file.

A large selection of pre-made traineddata files are available from the
official Tesseract repository [33]], and using tried and true pre-trained data
is the recommended approach for recognition of natural language such as
English text. That said, if the use case is more specific better results could
be achieved through performing the aforementioned training process.

Tesseract is used for recognizing and extracting the MRZ from camera
images in our implementation.

However, we do not use libtesseract directly, but an Android-specific
wrapper library known as tess-two[34].

The tess-two package provides an Android-ready OCR setup which
includes the native libraries (compiled for the Android platform) and a
thin-wrapper Java APL. Additionally, the Leptonica image processing library
[35] is included in the package.

71

8.1.2.5 RxJava

RxJava is a Java implementation of Reactive Extensions (ReactiveX, RX),
developed by Netflix.

ReactiveX is dubbed “an API for asynchronous programming with observ-
able streams” [36], which in simpler terms means it’s a toolkit for writing re-
active code: a programming paradigm oriented around data flows and event
propagation.

RxJava in used throughout MRTD Inspector to facilitate an event-driven
architecture and to ease the handling of background threads for database
access, NFC I/O and other long-running tasks.

8.2 Code overview

The code base of MRTD Inspector consists of four modules:

¢ common: Contains utility classes, generic Ul components and helper
classes.

¢ ocr: The core OCR implementation. Defines a simple API which en-
capsulates the initialization of the OCR context, performing repeated
image recognition and fetching the results.

e mrtd: Comprises everything to do with reading MRTDs, including
the MrtdReader which implements our contactless inspection proced-
ure, supportive model classes and certificate management code.

* app: The actual Android app which contains all user interfaces
(Activities), service classes, application specific business logic and
models.

The modules depend on each other, and as can be seen in Figure
the dependencies are one-way only. The result is a code base made to
promote component reuse. For example, one could extract the mrtd (and
common) module and use it in another project without changing the code or
backporting code from app.

72

common

mrtd ocr app

i | | J

Figure 8.3: Dependency graph of the source code modules.

8.2.1 MYVP design pattern

The application code of MRTD Inspector (that is, the app itself) is organized
using the Model-View-Presenter (MVP) design pattern.

MVP is a derivative of Model-View-Controller (MVC), and is essentially a
design pattern which enforces and promotes separation of concerns between
the user interface, presentation logic and model. MVP is illustrated in

Figure[8.4,

‘ View ’
Y
User action .
(e.g. button click) Update view
‘ Presenter ’
Update or fetch Inform of
model changed state
i
{ Model 1

Figure 8.4: The Model-View-Presenter design pattern.

Figure [8.5/ shows the structure of our Android application code with the
MVP pattern applied. Note that the activities and presenters are volatile
(i.e. they will get torn down and re-instated upon certain life cycle events)
whilst the models and services are persistent and live for the duration of
the application life cycle (from instantiation to app shutdown).

Due to this the presenter must dynamically bind and unbind the models
and services. Long-running tasks running in the application services will

73

live through activity recreation or shutdown, and in order to resume
an operation (such as running MRTD inspection) in the user interface
the presenter must gracefully rebind services and update the UI state
accordingly.

For many parts of the app these tasks are handled using RxJava,
which allows weak bindings between the presenters and service layer
components, avoiding thread- and memory leaks.

Life cycle events,
user actions,
Ul updates

Models and services
Presenter

Data manager

Activity L' DB, disk,
preferences

Views i
Model updates, I.Petrsftenrt .
application service application services
Fragments events
OCREnNgine,
Android services MrtdReader,

Figure 8.5: MVP in the Android app.

8.3 MRZ scanner

Optically reading the MRZ is one of two core components of the inspection
workflow specified in Chapter 7]

In the following sections, key points of the MRZ OCR implementation
are surveyed: first we give an overview of the internal API of the ocr
module, followed by the MRZ OCR procedure and at last a section on
tuning the performance of our OCR implementation.

8.3.1 OcrEngine

The OcrEngine class in the ocr module constitutes the primary API for use
by external classes.

It encapsulates configuring and initializing the Tesseract context as well
as offering a simple interface for performing the OCR decoding of input
images. The public API of OcrEngine. java is shown in Figure

74

public OcrEngine (String tessdataBasePath, String
traineddataFilename, String traineddatalanguage) {...}

public void stop(O{...}
public void clear(O{...}

public IOcrResult
doOcrDecode (OcrRequest ocrRequest) {...}

Figure 8.6: The public API of OcrEngine.java

The OcrRequest class encapsulates the input data, including the raw im-
age bytes and a framing rectangle, which marks the position of the rectangle
shown in the viewfinder and is used to crop out unnecessary image data.

public class OcrRequest {
final Rect framingRect;
final bytel[] data;
final int width, height;

public OcrRequest (Rect framingRect, byte[] data, int
width, int height) {...}

IOcrResult is a marker interface implemented by two concrete classes:
OcrResult and OcrResultFailure.

The first of these is a fairly complex model class which contains
the decoded text, the processed image which was used for recognition
internally and a selection of other meta-data from the decoding such as
the time used and the detected character boxes.

The second is used to represent decode failure (when no text was
detected in the image data) and simply contains the time spent on the failed
operation.

8.3.2 Continuous OCR decoding

The MRZ scanning is implemented as a continuous process, running in
real-time as the user presents the MRTD data page to the camera of the
device. Simultaneously, visual feedback allows the user to gauge if the
proper image is being captured or if the camera position needs adjustment.

75

MrzScannerActivity

P<NORFOX<<SAMUEL<<<<LLLLLLLLLLLLLLLLLLLLLLLL
1000000018NOR7304017M1903267<<<<<<<<<<<<<<04 ||

Phone camera OcrEngine

Figure 8.7: The MRZ scanner continuous OCR decoding. The dashed lines
denote the live video feed from the camera to the activity, and ultimately
the view.

Figure[8.7)shows the continuous process, orchestrated by MrzScannerActivity.
The labels mark the steps of the process:

A: The camera provides a real-time image stream to the activity. The
stream is fed through to the preview view, providing a video preview
for the user. This runs independently of B and C.

B: The activity picks a single frame from the stream, sends it to the
OcrEngine for OCR decoding on a background thread, blocking until
the result is returned.

C: If the result is an OcrResultFailure the activity re-starts the process
from B. However, if the result is an OcrResult the activity checks if
the returned text is a valid MRZ. If it is, the process is exited and the
MRZ is returned. If not, the processed image is extracted from the
OcrResult and overlaid on the viewfinder, providing the user with
an indication of what the OCR engine sees. Following this the process
loops back to B (and continues until a valid MRZ is found or the user
exits the activity).

The flowchart in Figure 8.8|depicts this capture-decode-evaluate loop.

76

Capture

; OCR decode |
image
Decode failures
No Found Return MRZ
text?
Yes
False positives ¢

Update Valid
viewfinder No— MRZ? —Yes

Figure 8.8: Flowchart of the OCR procedure.

8.3.3 Tuning Tesseract

As stated, our OCR implementation is reliant on libtesseract, encapsu-
lated within the OcrEngine of the ocr module.

Tesseract is made to be a flexible API which can be employed for a wide
range of OCR uses, and is therefore highly tunable. In fact, though there
are tried-and-true ways to use it for the most popular applications, such
as recognizing natural language text in a well-known font, it is necessary
to tune it specifically for the intended use in order to achieve optimal
performance and accuracy. Our requirements for these properties are:

* Accuracy: the OCR engine should be tuned to the exact character-
istics of the MRZ, avoiding false positives which are “illegal” . This
includes searching only for the MRZ character subset printed in the
OCR-B typeface, and not looking for structured sentences or words.

* Performance: our scanning procedure runs in real-time and the
execution time of the OCR decoding must therefore be reasonably
short. Limiting the perceived delay between adjustment of the
camera position and getting visual feedback will mitigate lag and
make the scanner easier to use, thus producing better results.
Remember also that this is running on a resource-limited mobile
device, meaning there are no CPU cycles to waste.

Three steps have been taken in order to tune Tesseract for these properties:
training, tuning the configuration and optimizing the input images.

8.3.3.1 Training

Recall that Tesseract is dependent on a traineddata file which is more or less
tailored to the specific use case.

77

In the early stages of development we used the pre-trainedE]
eng.tessdata, but our observations showed that this was not satisfactory
for MRZ scanning: the results were inaccurate, recognition time was too
high and most recognition attempts returned failure.

As a step to alleviate these issues we elected to create a traineddata file
tailored for the task, namely:

* Specifically created for the OCR-B typeface only.
¢ Trained only for the 37-character subset of the MRZ.

¢ Trained with MRZ-type data (that is, continuous blocks of text)
as opposed to natural language (for which word recognition is
desirable).

To do the training we follow the process as described in the official
documentation [37]. This is, in short:

* Create test data.

* Run the training tools on the test data.

* Manually correct the output to perfectly reflect the input.
¢ Manually tune parameters to fit the use case.

e Assemble the traineddata file.

Following is a more detailed description of the process used to create the
MRZ-specific traineddata file.

8.3.3.1.1 Creating mrz.traineddata

First, we prepare a text file of MRZ-like data. The file is constructed as one
continuous line of text containing MRZ-like data and is exclusively using
the MRZ character set. An excerpt is shown in Figure

WEBER <<HILLARY <<<<<<<<4008143884GBR7709265M1601013<<
AAWWWZZZQQQRRJIJKLMPASDEWW <<O06P<GBRMASTERSON <<FREDERIC
K<<<<<<<<JJJJJJJAADSDSDWJJJ <<9872846363GBR3011227M16
01013<<<<<K<<K<<K<K<K<K<<OOP<GBRALLGROVE <<MAUD <<<<<<<<<<05

Figure 8.9: Excerpt from mrz_training_text.txt. The file is 2399 characters.

From this we generate a training image by using the text2image tool, spe-
cifying the OCR-B typeface:

2 Available for free from the official Tesseract repository at [33].

78

$ text2image --text=mrz_training_text.txt --outputbase=
mrz.ocrb.exp0 --font=’0crB’ --fonts_dir=/fonts/dir

The result is a training image, shown in Figure The image is made
to reflect the characteristics of a scanned piece of paper with the typical
OCR image pre-processing applied (aligned, thresholded, binarized). That
is, not as clean as a purely digital rendition, but more like an optimized
photo.

WEBER<<HILLARY<<<<<<<<4008143884GBR7709265M16
P<GBRMASTERSON<<FREDERICK<<K<K<K<K<KK<KJJJJJJJAADSD
3<<<<<KLKLKLLLLLL<KOOP<GBRALLGROVE<<KMAUD <KKLKLKLLLK
<<<<<<<<0B8P<GBR5437723BLUNDBY<<ALICE<<<<KLL<LLK
<<<7325728761GBR8610234F1601013<WWWW<<<<00P<G

Figure 8.10: A section of the MRZ training image.

This image is then fed into Tesseract to produce a box file:

$ tesseract mrz.ocrb.expO.tif mrz.ocrb.exp0 batch.nochop
makebox

The resulting file, mrz. ocrb. exp0.box, looks like this:

1365 2721 1388 2758
1394 2721 1418 2755
1424 2721 1449 2755
1456 2721 1478 2755
1484 2720 1509 2757
1514 2720 1538 2757
1544 2720 1569 2757
1674 2720 1599 2757

WO WNTWaN -
O O O O O O oo

It contains one line per recognized character from the training image.

The next and most crucial step in the process is to correct the box file
to perfectly reflect the corresponding characters in the input text file. Often
similar characters are confused (e.g. I and 1) by Tesseract, and these must
be corrected.

This is a tedious process which is most often done with dedicated editor
software or through script automatiorﬂ

The next few steps in the process comprise running the corrected box
file through the unicharset_extractor tool to extract the character set,
creating a font_properties file with the relevant parameters for the OCR-
B typeface and running the shapeclustering, mftraining and cntraining
tools.

3We used both, in fact.

79

The last file needed is the unicharambigs file which contains a set of
structured options to tell Tesseract about any known character ambiguities
such as “I” and “1” or “0” and “0”.

The result of performing all of these steps is the following list of files:

* mrz.inttemp

* mrz.normproto

e mrz.pffmtable

¢ mrz.shapetable

¢ mrz.unicharambigs

e mrz.unicharset

These files are combined using the combine_tessdata tool, which produces
the mrz.traineddata file:

$ combine_tessdata mrz.

The traineddata file is 310 kb, which is considerably smaller than the
pre-trained eng.traineddata at 20.9 MB.

Also, running Tesseract (on the command line) using the new trained-
data on a small selection of MRZ images demonstrates that it is reasonably
accurate given the input images are properly pre-processed (thresholded,
monochrome)}

8.3.3.2 Tuning the configuration

The Tesseract documentation at [38] lists 648 configurable parameters for
Tesseract 3.02. However, many do not apply to our needs and we only
need to configure a small subset.

Through researching several resources and much trial-and-error we
have identified a small set of parameters and values which positively affect
the OCR performance of our implementation, they are shown in Table

4We did this pre-processing manually using the GIMP image editor package in our
preliminary testing.

80

Parameter Value Description
tessedit_char_whitelist MRZ subset Whitelist of characters
to recognize
tessedit_pageseg_mode 1 (auto + OSD) | Page segmentation
mode
tessedit_unrej_any_wd 1 (true) Don’t bother with word
plausability?
tessedit_enable_doc_dict 0 (false) Add words to the dic-
tionary?
load_system_dawg 0 (false) Load DAWG?
load_freq_dawg 0 (false) Load frequent word
DAWG?
tessedit_tess_adaptation_mode | O (disabled) Adaptation mode.

Table 8.3: The Tesseract configuration. DAWG is short for Directed Acyclic
Word Graph. It is used as a fast-lookup dictionary by Tesseract. The DAWG
parameters and values effectively disable the dictionary.

The effects of these settings are that we are:

* Limiting recognition to the MRZ subset.

* Setting the Page Segmentation Mode to automatic with script detection,
which was shown through experimentation to offer the most accurate
results.

¢ Disabling dictionaries altogether. They are not relevant to our use
as we are not detecting natural language and do require substantial
resources.

* Disabling adaptation. Our Tesseract context is used once and then
cleared, thus adaptation between different runs is only a waste of
resources.

There are more than likely more parameters we could tune to optimize
performance and accuracy. Unfortunately, the Tesseract documentation is
not very deep on this subject matter and considerable effort would have to
be put in.

8.3.3.3 Input optimizations

Through early experimentation and learnings from reading the available
documentation, it is clear that the quality and characteristics of the input
images has great effect on both performance and accuracy.

Two steps need to be taken to optimize OCR conditions for the input
data:

* Ensure the original input image is of sufficiently high resolution, is
well focused, well lit and well aligned.

* Remove any noise or unnecessary information from the image.

81

The image resolution is chosen when doing the camera setup in
MrzScannerActivity. The concrete resolutions which are available is
dependent on the device, and we must make sure to pick a suitable one.

This is not necessarily the highest possible resolution, however. Our
main development device, the Google Nexus 5X, has a maximum camera
resolution of 3840 x 2160 when requesting a 16:9 aspect ratio image. Early
testing showed that images of this size severely affects the execution time
of the OCR decode procedure, almost tripling it, and causing unacceptable
delays and lag. Clearly, there is a trade-off between high quality input and
the resources used for capturing and processing the image.

Experimentation with different image resolutions on the aforemen-
tioned device revealed that 1920 x 1080 images performed best while still
providing reasonably high quality images, whilst lower resolution images
gave little performance improvement but severely affected accuracy.

Coincidentally the optimum resolution of 1920 x 1080 is the maximum
guaranteed to be available on any Android device which supports the
Camera2 APP

As stated the alignment, lighting and focus of the image are important
as well. These factors are, however, not trivial to mitigate in software and
we rely on the user to correctly light the MRZ and align the camera. We
do provide a viewfinder in the MRZ scanner to aid in this, as well as an
overlay which shows the last decoded image. There is also an option to
switch on/off the camera torch (flash) in order to provide a light source in
very low-light conditionﬂ

Once the image is captured a few steps of preprocessing is done to remove
superfluous information, easing the task of the OCR engine.

Tesseract only works with greyscale images, so any color information
can safely be removed from the image. The images are captured by
MrzScannerActivity in the YUV 420 format. This is a multi-plane YCbCr
encoding, allowing the luminance (Y) channel to be easily extracted,
resulting in a greyscale image.

In addition to this we help Tesseract along by cropping the captured
image to exactly reflect the region of the viewfinder rectangle. Doing so
ensures that what the OCR engine sees is what the user sees, and that no
resources are wasted attempting to decode non-MRZ parts of the image.
The last step is handled by Tesseract itself. It entails performing adaptive
thresholding to create a binarized imag That is, an image of only binary
value pixels.

This simple image processing pipeline is shown in figure

5For simplicity we support only the newer Camera2 API in our prototype.

®Though reflective glare is a potential issue under these circumstances.

"The binarized image is also overlaid the viewfinder to guide the user in finding the
right camera position.

82

Crop to viewfinder l

-

A
P<BDRMUSTERMANN<<ERIKALLLLLLLLLLLLLLLLLLLLKLK

CADDDOOD<4D<<6408125F1802212<<L<L<CLLLLLLL<h

¥
Extract luminance

P<BDRMUSTERMANN<<ERIKA<L<LLLLLLLLLLLLLLLLCCLK
CADDO000<4D<<6408125F1802212<<<<LLLLLLLLLL<<h I

I
v
Binarize }._ - ~{ Adaptive thresholding
P<BDRMUSTERMANN<K<ERIKA<<LLLCLLLLLCLLLLLLCLLK OCR
CAQDO000<4D<<E4L08125F1802212<<<LLLLLLLLKL<h

Figure 8.11: The MRZ image processing pipeline.

8.4 Contactless inspection

In the following sections we review the implementation of contactless
inspection.

First we look at the APIs provided in the mrtd package and in particular
the MrtdReader and its supportive classes.

Next, we go into the details of the actual eMRTD inspection procedure
implementation, including authentication, reading of data and validation.

8.4.1 MrtdReader

The implementation of contactless inspection resides in the mrtd module. It
comprises all inspection logic as well as supportive classes such as MRTD-
specific models and utility classes.

MrtdReader is the central component of the module and contains all the
core logic for performing contactless inspection.

It exposes a very simple API, seen in Figure[8.12}

83

// Public comnstructor

public MrtdReader (
MrtdReaderListener listener,
TerminalCertificateStore terminalCertificateStore,
TerminalKeyStoreWrapper keyStoreWrapper,
KeyStore cscsKeyStore) {...}

// Conmect to tag and start reading
public void read(Tag tag, MrtdCredential credential,
MrtdReaderConfiguration configuration) {...}

// True if reading ts im progress, false otherwise
public boolean isReading() {...}

// Force close the reader thread
public void abortRead () {...}

// Checks if tag is currently connectable (physically
present at the NFC interface)
public boolean hasConnectivity(Tag tag) {

Figure 8.12: The public API of MrtdReader.

The constructor requires an instance of MrtdReaderListener, which defines
a callback API for reader events. An excerpt is shown in Figure 8.13]

void onReadStart () ;
void onReadFinished (Mrtd mrtd) ;
void onError (Throwable error);

void onBeforeBac () ;

void onBacResult (AuthenticationResult
authenticationResult);

void onBeforePace () ;

void onPaceResult (AuthenticationResult
authenticationResult) ;

void onBeforeEac () ;

void onEacResult (AuthenticationResult

authenticationResult) ;

void onBeforeReadDgl () ;
void onReadDgl ();

void onBeforeReadDg3 () ;
void onReadDg3();

Figure 8.13: Excerpt from the MrtdReaderListener interface.

On each of the reader events, such as performing an authentication pro-

84

tocol, reading a data group or the read process failing, the corresponding
callback method is called on the supplied MrtdReaderListener implement-
ation.

Due to this event oriented design, the consumer of the MrtdReader
API can selectively monitor the different events of the inspection process,
handling them in a manner appropriate for the specific application. For
instance, one might want to use the reader API for a back-end process
which only cares about the end result, and could thus implement a listener
handling the onReadFinished(..) callback only. In the case of a Ul
application, on the other hand, the events could be bound to UI updates
in order to keep the user informed of the reader status.

The latter is the case for MRTD Inspector, where the ReadProgessPresenter
listens to the events, updating the Ul in ReadProgessActivity as the in-
spection progresses.

The read(..) method of MrtdReader is the entry point for performing
contactless inspection. It is called with three arguments:

¢ Tag: the Android abstraction for an NFC tag which has been
discovered.

e MrtdCredential: a model object which encapsulates the MRZ-
derived credentials needed to form the BAC or PACE static keys:
document number, date of birth and date of expiry.

¢ MrtdReaderConfiguration: a model object which contains values
for all of the configurable parameters of the reader. This includes
the reader timeout, a list of the DGs to read and settings for which
protocols to use or exclude.

Once read(..) is called, MrtdReader spawns an internal worker thread,
executes the procedure as dictated by the supplied configuration, calls
the appropriate callback methods whilst doing so and at last returns an
instance of the Mrtd object in the final onReadFinished(..) callback. This
architecture is illustrated in Figure [8.14}

85

MrtdReaderListener MrtdReader

onReadStart()
[read(..) }
7
. r— - 7
onError(..) l« - 7/ Throwable /
e _J

onReadFinished(..)

} Mrtd

Figure 8.14: The MrtdReader callback architecture.

8.4.2 Mrtd model class

The underlying library we use to perform the protocols and operations
of the inspection, JMRTD, defines a single encapsulation of the eMRTD
Logical Data Structure in the LDS class.

This class is heavily integrated into the JMRTD PassportService API,
and a single, global and mutable instance is more or less required to
perform most parts of the inspection. This because the object is used as
the base holder of all data read, and also holds references to the underlying
InputStream instances (which bind to the NFC subsystem).

Due to this rather inelegant and inflexible design, an instance of the LDS
class is a potential minefield of memory, stream and thread leaks. Also, it
cannot be serialized and thus cannot be passed through our activitie In
short: it simply doesn’t fit well with out application architecture. Also, it’s
not good practice to expose third-party packages in APIs, potentially mak-
ing our mrtd harder to use.

Answering to these shortcomings of JMRTD we have elected to implement
our own LDS abstraction in the Mrtd class.

It is not a complete implementation of the LDS by any means, as that
is strictly not needed. It is rather a simplified container for the data (DGs,
security data) we are extracting and wish to expose in the user interface.

It is implemented as an immutable object, meaning its state is guaran-
teed after construction. This is good practice for static data: once the object
has been returned from the reader it cannot and will not change. It also im-
plements the Android Parcelable interface, meaning it can be easily and
efficiently serialized using the native Android serialization format.

A class diagram is shown in Figure

8Passing application data between activities is tricky due to the separation between
them and requires objects to be serializable or Parcelable. Alternatively one could pass
objects in shared memory, but it is considered bad practice.

86

Mrtd

com:Mrtd.Com
sod:Mrtd.SecurityObjectData
dgl:Mrtd.DataGroupl
dg2:Mrtd.DataGroup2
dg3:Mrtd.DataGroup3
dg4:Mrtd.DataGroup4

Mrtd.DataGroup2

portrait:MrtdImage

Mrtd.Com

tagList:int[]
ldsVersion:String

Mrtd.SecurityObjectData

docSigningCertifcate:
X509Certificate

dgHashes:
HashMap<Integer, byte>

signatureInfo:SignatureInfo
dgHashAlgorithm:String

Mrtd.DataGroup3

fingerprint:MrtdImage[]

Mrtd.DataGroup4

iris:MrtdImage[]

Figure 8.15: The Mrtd class. All of the contained data group objects are
defined as public inner classes of Mrtd.

8.4.3 Inspection

As stated, the MrtdReader relies on JMRTD to perform the various parts of
the inspection procedure. It does so by using an instance of the JMRTD-
provided class PassportService. This object encapsulates the connection
to the eMRTD tag and exposes methods to perform authentication, read
data and manage the connection.

The internalDoRead(..)

Mrtd.DataGroupi

documentNumber :String
documentCode:String
issuingState:String
dateOfExpiry:String
personalNumber :String
primaryIdentifier:String
secondaryIdentifier:String
dateOfBirth:String
nationality:String
gender:String

method of MrtdReader initializes the

PassportService and Taéﬂ connection as seen in Figure

9Tag is the Android encapsulation of a connected NFC tag.

87

IsoDep isoDep = IsoDep.get(tag);
isoDep.setTimeout (configuration.getReaderTimeout ());

try {
IsoDepCardService idcService
= new IsoDepCardService(isoDep);
mPassportService = new PassportService(idcService);
mPassportService.open() ;
} catch (CardServiceException e) {

Figure 8.16: Initialization of PassportService. Simplified for brevity.

8.4.3.1 Authentication

Once the PassportService is set up, the next step is to start the initial
authentication procedure. This comprises two initial steps:

¢ Checking if PACE is supported and that the app configuration allows
using it (remember, there is a toggle for forcing BAC).

¢ Performing PACE or continuing without.

If PACE is performed, onPaceResult(..) 1is called on the registered
MrtdReaderListener, containing the status of the authentication:

try {
doPaceAuth (credential, pacelnfo);
} catch (MrtdReaderException e) {
mListener.onPaceResult (
new FailedAuthenticationResult (
AuthMethod .PACE, e, true
) 8
return;

)

Once either PACE has been performed or it has been established to use
BAC the corresponding eMRTD application can be selected:

mPassportService.sendSelectApplet (isPaceAuth) ;

88

If the BAC applet was selected, BAC authentication happens next (in
a similar fashion to PACE). If the PACE applet was selected, however,
authentication is now finished.

Once either BAC or PACE has been completed, PassportService
switches to Secure Messaging using the derived session keys and the less
sensitive data groups are now accessible.

8.4.3.2 Reading the less sensitive data

The read operation is similar for all DGs. The internal method
readLDSFileOrThrow(..) is a generic method used internally for reading
all LDS DGs:

private
<T extends LDSFile> T readLDSFileOrThrow(
LDS 1lds, final short fid, Class<T> clazz
) throws MrtdReaderException {
T dgFile;

try (
CardFileInputStream in = mPassportService.
getInputStream (£fid)
) 1
lds.add(fid, in, in.getLength());
dgFile = clazz.cast(lds.getFile(£fid));
} catch (CardServiceException | IOException e) {
throw new MrtdReaderException(
"Failed to add and read DataGroup with FID " +
fid + " of Class " + clazz.getName(), e);

}

return dgFile;

As can be seen, the InputStream for the DG is first resolved using the
PassportService. It is then added to the LDS object, which internally per-
forms the underlying READ_BINARY operation with the contactless IC and
stores the data. The returned LDSFile subclass object is a Java representa-
tion of the DG, populated by said data.

First, the EF.COM and EF . S04 DGs are read, followed by the mandatory DGs
1and 2.

Reading DG2 is a bit more complicated as it comprises extracting the en-
coded face image. The aforementioned generic method is still used to fetch
the DG2File object, but a few more steps must be taken to get the actual im-
age from the contained CBEFF-compliant data structure. The readDG2(. .)
method does the following;:

89

List<FaceInfo> faceInfos = dg2File.getFaceInfos () ;

if (faceInfos == null || faceInfos.isEmpty()) {
throw new MrtdReaderException () 3

}

FaceInfo faceInfo = faceInfos.get (0);
List<FaceImageInfo> facelImageInfos = facelnfo.
getFaceImageInfos () ;

if (faceImageInfos == null || faceImageInfos.isEmpty()) {
throw new MrtdReaderException (D

X

FaceImageInfo faceImageInfo = faceImagelInfos.get (0);

MrtdImage image;

try {
image = extractImage (faceImageInfo) ;
} catch (IOException e) {
throw new MrtdReaderException () 3

}

As can be seen the image data is resolved from the nested FaceInfo and
FaceImageInfo objects. The MrtdImage class is a simple wrapper for the
raw data and MIME typﬂ of the image and decoding the image data into
bitmap format is handled elsewhere (UI layer).

8.4.3.3 EAC and sensitive data groups

Next, the procedure conditionally performs Extended Access Control. The
following conditions must be met for EAC to be executed:

e The EF.COM tagList contains EF.DG14E EF.CVCA and at least one of
the sensitive data groups (3, 4).

¢ The TerminalCertificateStore contains a certificate chain and IS
private key which matches the CVCA.

¢ EAC is not disabled by the user.

First, Chip Authentication is performed by the doChipAuthentication(. .)
method. It first resolves a suitable CA cipher suite to use by performing the
following steps:

1. Resolve the ChipAuthenticationPublicKeyInfos from EF.DG14.

10Two-part media identifier in the type/encoding format. Example: image/jpeg.
'Holds the Chip Authentication public key.

90

2. Select a CA public key from ChipAuthenticationPublicKeyInfos for
an algorithm suite which is supportedH

Once a suitable CA public key is select, the doCA(..) method of
PassportService is executed with the selected key Ol[ﬁ and public key.
If successful, Secure Messaging is restarted with the selected cipher
parameters and execution of Terminal Authentication starts in the
doTerminalAuthentication(..) method.

Before TA can be initiated with the IC, several parameters are resolved.

First the EF.CVCA is read and the CAReference is extracted. This is
then used to search the TerminalCertificateStore for a matching chain
of Card Verifiable Certificates.

If no match is found we cannot authenticate with TA and execution
stops. If a matching chain is found, however, we are in possession of the
correct credentials (as far as is known at this stage) and execution resumes.

Additionally, the matching IS private key is resolved from the
TerminalKeyStoreWrapper, which is the app-internal store of private keys.

At this stage everything is in place and TA is executed by calling
doTA(..) on the PassportService with the resolved chain of CVCs, IS
private key, compressed public key from CA and MRZ-derived credentials.

If TA fails the inspection resumes as usual, but if it succeeds access to
the sensitive DGs should now be granted (depending on the privileges of
the particular IS certificate used). In the latter case DGs 3 and /or 4 are read,
which is a process very similar to reading DG2 but with the added step of
extracting multiple biometrics (if they are present).

8.4.3.4 Validation

The last step of the inspection procedure is document validation. In more
technical terms, the procedure performs Passive Authentication.

First, the signature of SOy is checked in checkSodSignature(..). The
following preliminary steps are taken:

* Get the eContent and encrypted digest from the SO; SignedInfo
structure.

* Resolve which digest algorithms are used for the DG hashes and for
the encrypted digest.

Once these have been performed the next step is to do the signature
verification itself:

2Dye to a bug in the current version of JMRTD only 3DES is supported for Secure
Messaging post-CA.

13Objec’c Identifier, in this case identifying a specific suite of ciphers for CA and Secure
Messaging.

91

Signature signature = null;

try {

signature = Signature.getInstance(signatureAlgorithm) ;
} catch (NoSuchAlgorithmException e) {

return false;

}

try {
signature.initVerify (sod.docSigningCertificate ());
signature.update (signaturelInfo.eContent ());
return signature.verify(sod.signatureInfo().signature ()
)
} catch (InvalidKeyException | SignatureException e) {
return false;

}

Next, to ensure the signature is genuine the Document Signer Certificate
Cps in SO, is validated by the method checkDocSignerValidity(. .).

It employs the Certificate Path Validation algorithm defined in RFC 5280
to try and resolve and validate a certificate chain for Cpg from the
CSCA certificates installed in the CscaKeyStore.

CertPathBuilder builder

= CertPathBuilder.getInstance ("PKIX");
PKIXBuilderParameters params =

new PKIXBuilderParameters (cscaTrustAnchors, selector);

params.addCertStore (docStore) ;
for (CertStore trustStore : cscaStores)
params .addCertStore (trustStore) ;

// We do mnot support CRLs at this time.
params.setRevocationEnabled (false) ;

PKIXCertPathBuilderResult pkixResult = null;

try {
pkixResult = (PKIXCertPathBuilderResult) builder.build
(params) ;
} catch (CertPathBuilderException e) { /* Failed! #*/ }
/* Succeeded! */

Figure 8.17: Excerpt from MrtdReader: Certificate Path Validation

Figure[8.17)shows an excerpt from the internal method doPkixForChain(. .)
which performs the aforementioned certificate path validation.

At this point the SO, has been fully authenticated against a known CA
in our store of CSCA certificates. The next and final step of document

92

validation is therefore to check that the now authenticated data group
hashes in SO; match the data that has been read. The steps done for this
are:

1. Resolve the hashing algorithm used to create the hashes (from the
SignedInfo in SOy).

2. Instantiate the hashing algorithm and use it to compute a list of
hashes over the data groups read during the inspection.

3. Get the list of stored data group hashes from SO; and compare them
to the ones computed in the previous step.

Figure is an excerpt from doPA(. .) which performs this procedure.

for (Map.Entry<Integer, 7 extends DataGroup> entry
dataGroups.entrySet ()) {
int dgNum = entry.getKey();
DataGroup dataGroup = entry.getValue();

byte [] encoded = dataGroup.getEncoded () ;
if (encoded == null || encoded.length == 0) {
continue;

}

byte [] computedHash = digest.digest (encoded) ;
computedDataGroupHashes .put (dgNum, computedHash) ;

byte [] sodHash = sod.dataGroupHashes () .get (dgNum) ;
if (sodHash != null) {
dataGroupHashValidationResults.put (
dgNum, Arrays.equals(sodHash, computedHash)
)
}
}

Figure 8.18: Excerpt from MrtdReader: computing and comparing DG
hashes.

8.5 Known flaws and shortcomings

In the following sections we list known flaws and shortcomings pertaining
to our implementation of the ICAO and EAC inspection procedures.

Active Authentication support

Support for Active Authentication is specified in the system requirements
but is at this point not implemented.

That said, and implementation is available in J]MRTD, and we have
tested it briefly (it works), so adding support should be trivial.

93

Passive Authentication deviations

The current implementation of Passive Authentication in MrtdReader is not
fully compliant with the specification given in [4].

First, when the Document Signer certificate validation is performed, the
relevant revocation lists are not checked for the resolved CSCA certificate.

This is obviously an important part of the validation procedure and not
performing it essentially breaks the integrity of the system.

Second, the sequence in which the steps (validating Cps, CSCA, SO,
and the hashes) are performed is not entirely in line with the procedure
specified in Doc 9303, though all steps (bar the CRL checks) are performed.

Limited Secure Messaging cipher support after CA

When performing Chip Authentication a suite of algorithms is chosen from
the ones offered by the eMRTD. When selection a suite which employs the
AES cipher the subsequent Secure Messaging setup fails.

The reason for this is missing support in the underlying JMRTD
implementation of CA.

Currently, a workaround is implemented which forces the selection of
a 3DES cipher. It works for our single EAC ePassport sample, but will fail
to perform CA in cases where a 3DES option is not available.

PACE shortcomings and instability

The implementation of PACE has been a challenge for the entirety of
development.

Though some show-stopping bugs were solved in early stages, a few
both major and minor issues, defects and frailties remain.

First, only a subset of the PACEv2 protocol is supported. In particular there
is no implemented support for PACE-CAME and also no support for using
a Card Access Number (CANE} Both of these missing features are due to
the absence of support in JMRTD.

For the same reason only the Generic Mapping is supported at this time,
meaning documents which only support the Integrated Mapping cannot be
read using PACE. [15] specifies that supporting both GM and IM is man-
datory for SAC inspection systems.

The main issue with the PACE implementation is not these missing
features, however, but rather a very prominent instability problem.
Simply put, PACE authentication will very often fail for no known
reason. The failure is always at the IC side, but the phase of PACE at
which it occurs does vary some, with the majority of cases (that we have
observed) being in the fourth and final step (mutual authentication). An

14Chip Authentication Mapping
15The specification in [[15] does state that CAN support is optional, though

94

error code is returned, but it is only the generic 0x6300, simply translating
to “authentication failed”.

In addition to this, when PACE does succeed the performance seems
to be very unstable, ranging from a few short seconds to the 10-20 second
range (which is obviously way beyond unacceptable).

A key observation relating to this is that the positioning of the device in
relation to the MRTD seems to affect both stability and performance. This
also strengthens the theory that these issues are linked and are related to
insufficient power delivery from the device NFC antenna to the eMRTD.

It could also be argued that the fact that PACE has these problems, and
not other protocols is indicative of this: it is undoubtedly the most complex
and resource demanding of them all. The step which tends to fail (the
fourth) is also the most taxing operation of the protocol: exchanging and
validating the authentication tokens.

This said, we only have access to a single PACE-supporting MRTD.
More accurate indications of the root of the issues could be found by testing
our implementation with a larger selection of MRTDs, or even emulated
ones.

8.6 Some obstacles

During the course of development we have met many obstacles, both small
and large. A couple of them have taken so much effort to solve, however,
that they require special attention.

Both were eventually tracked to bugs in the JMRTD library, and have
required debugging and modification of it in order to find a solution. Both
of these solutions have been submitted as patches to the IMRTD developers
and have later been merged into the JMRTD source code.

In the interest of learning the next sections explain these bugs and the
solutions which ultimately resolved them.

Wrongful IV size assumption for PACE with AES

In initial versions of the app, PACE would simply not work. It consistently
failed after the first step of the protocol (transceiving the encrypted nonces).

Debugging of the JMRTD source code eventually pointed to an issue
with the IVE of the static cipher used, and it was finally discovered that
the IV size was wrongly assumed in the source code to be equal to the size
of the encrypted nonce.

The nonce is 16 bytes, yet the IV length of a block cipher is always equal
to the key length. Thus, for 3DES a 16 byte IV worked fine since 3DES
uses a 16 byte (128 bit) key. Yet for AES-256 (which is the only algorithm
supported by our sample MRTD) it failed as the IV length should have been
32 bytes (256 bits).

Once identified, the issue was easily resolved by dynamically setting
the IV length to the length of the cipher key.

16Tnitialization Vector

95

Block misalignment with AES Secure Messaging

Once the aforementioned IV bug was fixed, PACE would wor@ but a
another show-stopping issue appeared shortly thereafter.

We discovered that when reading data groups after PACE authentica-
tion the returned data would occasionally be corrupted. That is, JMRTD
and the underlying Bouncy Castle ASN.1 parser would fail to unmarshall
the data, making it unusable.

From much experimentation and debugging a couple of facts were
apparent: the issue was consistent, but only arose when reading the “large”
data groups such as SO; and DG2 (face image). Also, the issue was not
reproducible with BAC authentication.

Our PACE sample ePassport uses AES for Secure Messaging after PACE
and 3DES after BAC. Thus, we theorized that the issue might be related to
AES SM.

We went on to examine the raw response APDUs returned from AES
SM and comparing it to those from 3DES SM. From this we observed that
the data was corrupted by single bytes being replaced by a null-byte at the
end of certain blocks.

In the end the cause was traced to the fact that AES allows a one-byte
padding (in fact, zero padding is forbidden), which would occasionally
happen when requesting blocks of certain sizes from the eMRTD. However,
the handling of requesting and receiving blocks in JMRTD did not take this
into consideration, always assuming the returned data was the size of the
request. Example:

* We request bytes 224—448 (224 bytes) from the eMRTD IC.
¢ The IC returns a block of size 224, containing 223 bytes plus 0x00.

¢ We strip the trailing 0x00, yet still assume the block was 224 bytes,
essentially re-introducing the null-byte when copying it to a 224 byte
buffer.

¢ The next block is read from byte 448, whilst we in actuality should
have read from 447, causing a null-byte “hole” in the final data.

The issue was finally resolved by re-ordering the logic in JMRTDs
MRTDFileSystem class which keeps track of the returned block length, mak-
ing sure it is adjusted correctly when receiving 1-byte trailers.

8.7 Presentation of MRTD Inspector

In this section we give a brief tour of the MRTD Inspector app, showing its
various features and the MRTD inspection workflow.

17Though in an unstable manner, as described in

96

8.7.1 Configuration and utility features

Figure 8.19)shows the app menu, the credentials manager and the settings
screen.

The credentials manager allows adding, deleting and editing MRZ
credential sets to the internal database. This is mostly a convenience feature
for testing purposes.

The settings screen contains all of the configurable options of the
app, including the NFC timeout and settings for the various supported
protocols, such as forcing BAC authentication only, disabling EAC and so
forth.

0 94 11358 A (] 0 ¥ .4 11359

SA0e O 941400

= Manage credentials

Settings

Reader timeout
MRTD Inspector Max timeout of the reader (ms)
27444626
10500 ms

Abort on reader error
Abort the reader on all errors (i.e. missing

Manage credentials
elementary file) or attempt to continue?

Doc. no: 100000001

Certificates

DoB: 1973-04-01

Settings Do: 2019-03-26 Force BAC authentication

Use BAC even if PACE is supported

123 Try BAC if PACE fails
If PACE authentication fails for any reason,
attempt to do BAC instead

Really delete?

Passive Authentication (PA)
Cryptographically verify MRTD data
9UpdeuTgYSF

Extended Access Control (EAC)

Authenticate terminal for elevated permissions
(DGs 3 and 4)

t2pB4IOW7WW

Figure 8.19: The menu (left), credentials manager (middle) and settings
screen (right).

Figure [8.20]shows the certificate management features of the app.

It allows browsing the installed CSCA certificates, which can also be
viewed in detail. The menu in the top-right corner contains options for
deleting the current list or importing a new one. Currently only LDIF-
format CSCA Master Lists are supported for import, and they are selected
and fetched from the device file system.

There is also a feature which allows installing CVCA certificates for
EAC. As with the CSCA Master Lists, these are also selected by the user
and fetched from the file system.

97

SAlDe O 94 11401

0 ¥ .4 i 14:00 A 0 94 11401

= Certificates Delete list
Certificate
CSCA MASTER LIST Import list 04417dfbc7
Signature SHA256WITHRSA
Algorithm ID
v
Netherlands Issuer name SERIALNUMBER=2,CN=Nor
wegian Passport Certificate Add terminal certificate chain
Authority,0U=National Police
New Zealand v Computing and Material CVCA (optional)
Service,0=The Norwegian
Police,C=NO le/emulated/0/NOCVCA00001.cvCe
Norway o Validity period Not before: v
oros Iz 1ge/emulated/0/NODV00001.cvCert
ot after
2022-10-07 13:12:04 Is
CN=Norwegian Passport Certificate Authority,0U=National
Police Computing and Material Service,0=The Norwegian Subject name SERIALNUMBER=2,CN=Nor age/emulated/0/NOIS00001.cvCert
Police,C=NO wegian Passport Certificate
Authority,0U=National Police
Computing and Material rage/emulated/0/NOIS00001.pkcs8
SERIALNUMBER=2,CN=Norwegian Passport Certificate Service,0=The Norwegian
Authority,0U=National Police Computing and Material Police,C=NO

Service,0=The Norwegian Police,C=NO
Public key RSA
algorithm

C=NO,0=The Ministry of Justice,0U=PDMT,CN=CSCA_NO Subject public key 30820222300d06092a86488

670d01010105000382020f0

03082020a0282020100d6c1
C=NO,0=The Ministry of Justice and the PAOE3ANDAnOA PO e

Police,0U=PDMT,CN=CSCA_NO

Poland v

Figure 8.20: The certificate management screens. Installed CSCA Certfic-
ates (left), detailed certificate view (middle) and installing CVCA certific-
ates (right).

8.7.2 Inspection workflow

The main screen, seen in Figure is the home screen of the app and the
default entry point for MRTD inspection.

Holding an eMRTD to the back of the device or touching the ePassport
icon will launch the inspection procedure.

Also, the inspection is launched directly from any other part of the app
if an eMRTD is detected.

[~ [i ¥ 4 14 14:34

— MRTD Inspector

Ready to read!

Touch icon or present MRTD to start.

Figure 8.21: The main screen.

The first step of the inspection is to acquire the credentials for BAC/PACE,
which is handled in the credentials selection screen seen in Figure[8.22]

98

As we know, this is done by either manual entry or scanning the MRZ.
Manual entry is handled in the aforementioned credential manager, and
the user can select from that list or one of the recently used credentials. The
last option is, of course, to scan the MRZ.

€9 Recent

100000001
IIRDpVnbjmv

31512931

Figure 8.22: The credentials selection screen.

The MRZ scanner is seen in Figure It features a viewfinder to help
the user in finding a good position for the camera. The viewfinder also
overlays the image used for the last scan, showing the user what the
scanner is “seeing”.

There is also a toggle button in the bottom left corner which allows the
user to switch on/off the device torch for use in very low-light conditions.

1000000t CESAMUEL <CCLLLLLLLLLLLLLLLLLLLLLLLLKL

18NOR7304017M1903267<<<<<LL<<<<<<<D4 i

Figure 8.23: The MRZ scanner.

Once credentials have been selected or acquired the contactless inspection
starts.
First, the user is presented with the “Present MRTD” screen, shown in

Figure[8.24}

99

Figure 8.24: The “Present MRTD” screen.

As soon as an MRTD is detected the inspection procedure starts, giving
progress updates while running as seen in Figure In case of an error
the procedure stops and displays an error message to the user.

Figure 8.25: The progress screen.

Upon inspection finishing the MRTD viewer screen, seen in Figure is
launched.

The details of the document is displayed, also allowing the user to view
the portrait and fingerprint (see Figure in full resolution.

100

i 9 .4 id 14:33

Surname: FOX
Given names: SAMUEL O

Gender: MALE
Nationality: NOR
Date of birth: 730401
Personal number: O

FINGERPRINT <

Figure 8.26: The view MRTD screen.

i 9 4 14 14:34

Figure 8.27: The fingerprint shown in full resolution. The image is
zoomable (pinch-to-zoom).

101

102

Chapter 9

Evaluation

In this chapter we present our evaluation of MRTD Inspector. We do so in
order to gauge to what degree the app meets the requirements given in
and in extension we use these results as a basis for discussion.

In direct evaluation of our prototype we are most interested in the
performance and stability when performing inspection. Answering to
this we’ve devised and executed a series of experiments which assess key
parts of the procedure in isolation, providing discrete measurements of
execution times, accuracy and stability. For each experiment we present
the immediate results along with a short analysis. The broader perspective
is handled in the next section, however, which summarizes and discusses
the results in relation to each other and the wider context.

We conclude the chapter by presenting our main findings from the
experiments.

9.1 Experiments and measurements

In Chapter [7] we identified two key aspects of the eMRTD inspection
procedure:

1. Obtaining the BAC/SAC keys through scanning the MRZ and using
OCR.

2. Performing the inspection procedure(s) with the contactless IC
(security protocols and reading contents).

These are the core mechanisms which make up all eMRTD inspection use
cases. Therefore our experiments are devised to measure the performance
of these mechanisms in our implementation.

9.1.1 Method

The following sections establish and discuss the methods and tools used
for the experiments.

103

9.1.1.1 Measurements

All of our defined measurements are execution times, and therefore simple
time intervals, or discrete values (counts). We take measurements by
slightly modifying the source code of MRTD Inspector to record and output
the values at runtime (in the debug log).

This is by no means an exact method, and execution time can be affected
by much more than the execution thread itself, but fortunately we are not
dependent on micro-measurements, and are in any case only interested in
the real-life performance of our app.

9.1.1.2 Test subjects

We have access to three test subjects of which two are 1% generation
Norwegian ePassports and one is a Gemalto specimen ePassport. The
specimen passport S is technologically identical to the 3™ generation
Norwegian ePassports (issued from 2015). Contrary to the case for officially
issued documents, however, we have access to the entire EAC PKI for S3,
allowing us to outfit the MRTD Inspector app with a valid EAC certificate
chain and private key.

An overview of the ePassport subjects and their supported features is
given in Table and Table shows the sizes of the images in data
groups 2 and 3.

Subject | Issuer DGs BAC/PA | PACE | AA | EAC
S1 Norway (2007) | 1,2 v X X X
Sy Norway (2009) | 1,2 v X X X
S Gemalto (2014) | 1,2,3 v v v v

Table 9.1: The table shows our three test subjects and what features they
support. They are all ICAO TD3-type ePassports.

Subject | DG2 image size | DG3 image size
51 17786 bytes —
S5 16344 bytes —
S3 18237 bytes 9792 bytes

Table 9.2: DG2 and DG3 image sizes.

9.1.1.3 Physical vs. virtual

Due to the time- and resource-limited nature of this Master’s project we
have elected to only use these three physical eMRTDs for our testing, and
not virtual or emulated implementations. The latter would allow for more
diversity in the available features of the subjects, and would also enable
testing the software in separation of the hardware (no environmental
factors such as radio noise and physical position coming into play).

104

However, setting up a test bed which integrates with virtual eMRTDs
would be a considerable undertaking. The available software to do so
is complicated, and a lot of ground would need to be broken in order
to interface with our app. That is: it could be done, but would take
considerable effort.

In any case our main goal is to evaluate using an implementation like
ours in real world scenarios, making them our priority for testing.

9.1.1.4 Hardware
For the experiments we use only our main development device, namely the
LG Google Nexus 5X.

9.1.1.5 A note on statistical method

All of our measurements are discrete samples of time or quantity, and are
presumed to be independent. From the raw samples collected we present
the following calculated values:

* The range (min, max) of the samples.
¢ The sample mean.

¢ the Standard Error of the Mean (SEM).

For a sample group of size n we calculate the sample mean ¥ like so:

_ 1
x=—-(X1+Xo+ ..+ Xn)

n
The Standard Error of the Mean SEjy is defined as:

S

Vn

Where s is the Standard Deviation, for which we use the Population
Standard Deviation o, defined as:

SEx =

L(X—p)?

n

g =

Where X is the sample, y is the mean and # is the sample size.
We choose the Population Standard Deviation because we do not wish
to generalize our findings, but deem them as a self-contained group.

9.1.1.6 Raw experiment data

The raw data captured during the experiments are available in Appendix

105

9.1.2 Experiment A: MRZ recognition

Our implementation uses the built in, rear-facing camera of the smartphone
to perform the MRZ scanning procedure. This obviously contrasts a
purpose-built inspection system, which typically uses a “scanner-like”
system, tuned and constructed for the task at hand.

With the phone camera we are faced with challenges such as mobility
of the device and eMRTD, poor lighting and sub-optimal angles. In order
to evaluate performance of the MRZ recognition we take the following
measurements:

Measurement Unit Description
Aa Count Number of failed OCR recognitions until a
valid MRZ is found.
Ab Count Number of false positive OCR recognitions
until a valid MRZ is found.
A.c Milliseconds | Time from scanner is started until a valid
MRZ is found.

Table 9.3: Measurements for experiment A.

The descriptions of A.a and A.b might need some elaboration:

* “Failed OCR recognitions” refers to the case where the OCR engine
attempts to decode an image but does not find any recognizable data
at all, thus returning a failure.

* “False positive OCR recognitions” are results returned from the OCR
engine where text has been found, but is not a valid MRZ.

The timer for A.c starts once the MRZ scanner is launched and stops as
soon as an MRZ is found.

To learn about the limitations of our implementation using the phone
camera we perform the tests with variations of the following environ-
mental factors:

¢ Lighting: natural daylight or dark room (shutters closed, no direct
light source).

e Stability: eMRTD held in the hand of the user or laying still (phone is
hand held).

The combinations of these produce the following four test cases:

Test case | Lighting | eMRTD stability
Al Low light | Stable
A2 Low light | Unstable
A3 Daylight | Stable
A4 Daylight | Unstable

Table 9.4: The table shows the four test cases for experiment A.

106

For each of the three test subjects in Table we perform each test case
from Table9.4|10 times, yielding a total of 120 tests executed. For each exe-
cution we record data for each of the three measurements given in Table[9.3]

It should be noted that the results are dependent on a range of factors, not
only those specifically tested for. Also, the experiment is performed with
the operator trying to achieve the optimal (straight) angle, which is most
likely learned and somewhat adjusted for even before the MRZ scanner is
started.

9.1.2.1 Results
The results from Experiment A are given in Table

Test case Measurement Range Mean | SEM

Aa 0—11 1.6 0.2

A.1: low light, stable Ab 0—11 3.2 0.5
A.c 1708—10818 | 4341 | 332

A.a 0—16 0.9 0.2

A.2: low light, unstable Ab 1—16 3.7 0.8
A.c 1848—21727 | 5498 | 842

A.a 0—8 1.8 0.3

A.3: daylight, stable Ab 0—4 1.6 0.2
A.c 843—4306 2105 | 134

A.a 0—18 0.6 0.1

A.4: daylight, unstable Ab 0—18 3.0 0.8
A.c 726—11387 | 2548 | 352

Table 9.5: Results from experiment A.

Execution time of MRZ scanning

Breaking the number from Table [9.5/down we get the following figures for
the execution time of the test cases:

e Low light, stable: 4341£332 ms

* Low light, unstable: 5498+842 ms
¢ Daylight, stable: 2105+134 ms

¢ Daylight, unstable: 25484352 ms

The results indicate that the lighting conditions are the most significant
of the environmental factors we have examined. A well-lit environment
yielded MRZ recognition times in the range of two to three seconds for
both the stable and unstable test cases.

In the low light environment, however, the values are in the four to six
seconds range, which is considerably slower.

107

For all cases we do see that stability has an effect on the recognition
times, but not greatly so. That said, we observe that the unstable test cases
display a significantly larger range (and therefore SEM).

This is in line with our own observations while executing the test cases:
sometimes you “get lucky” and get a correct recognition right away, whilst
next time you might end up having to readjust the camera position multiple
times, prolonging the recognition time. Of course, the unstable scenario is
more sensitive to this as finding a “good” camera position is easier when
the MRTD is stationary.

Failures and false positives

The amount of failed recognitions are:

Low light, stable: 1.6+0.2 failures

Low light, unstable: 0.9+0.2 failures

Daylight, stable: 1.8£0.3 failures

Daylight, unstable: 0.610.1 failures

We observe that for our experiment the “failure” condition is a fairly
seldom occurrence. This is likely related to the fact that the experiments
were performed in a very controlled manner, with a “trained” operator
attempting to optimize the conditions.

This is reinforced by our observations when running the MRZ scanner:
when the captured image does not contain any MRZ-like information, for
example when pointed at the other parts of the data page, the failures are
fast and many. When the image does contain MRZ data, however, the pro-
cess most often recognizes at least some text.

The amount of false positives are:

Low light, stable: 3.2+0.5 false positives

Low light, unstable: 3.7+0.8 false positives

Daylight, stable: 1.6+0.2 false positives

Daylight, unstable: 3.01-0.8 false positives

The “false positive” condition happens when there is text data recognized,
but it does not contain a valid MRZ. It could contain parts of the correct
MRZ data, or it could contain only wrong information.

We observe that this condition happens, in most cases, significantly
more often than the “failure” condition, which supports the argument that
the experiment is somewhat biased in terms of chosen camera angle and
cropping region of the image.

The only exception to this is the “best case” daylight/stable scenario,
where both values are comparatively low. In this case the input data is

108

of very high quality and recognition is accurate enough so that very few
attempts are needed to find the correct MRZ.

9.1.3 Experiment B: Standard Inspection Procedure

In this experiment we wish to measure the performance and reliability
when executing the Standard Inspection Procedure as defined by BSI TR-
03110 [5]. It entails access control (BAC or PACE), reading the less-sensitive
data groups and Passive Authentication. The procedure is presented in
B51

Though [5] states that PACE should be preferred over BAC we have
elected to run the experiment with only BAC. The reason is that PACE is
not supported by test subjects S; and Sy, and that our implementation of
PACE is fairly unreliable (an isolated experiment is devised in to test
our PACE implementation).

BAC and PA together make up the entire protocol suite supported by
test subjects S; and Sp, meaning this experiment equates to the common
feature set of all our available ePassports.

In order to gauge the performance and stability of our implementation
we have defined the following measurements for this experiment:

Measurement Unit Description
B.a Milliseconds | Execution time of BAC.
B.b Milliseconds | Execution time of reading DG2.
B.c Milliseconds | Execution time of entire procedure.

Table 9.6: Measurements for experiment B.

We have chosen to not explicitly record the execution time of reading
DG1 or doing Passive Authentication as our preliminary observations are
that these are performed in negligible time (due to small amounts of I/O
required). That is: we prioritize studying the known bottlenecks.

Throughout development we have occasionally experienced that the
inspection just fails. It is most often due to losing the connection with the
eMRTD (as reported by the Android NFC subsystem), even in cases where
there is no movement during inspection.

Should failure happen during our experiment we do the following:

* Record the point of and reason for failure (to the best of our ability)
into a separate data set.

e Re-run the test.

This gives us the ability to learn from failures should they happen, yet
avoid diminishing the main data set.

Test subjects S; and S; are of a different generation and manufacture than

S3, which reflects the current ePassports issued in Norway. Therefore, we
wish to test these as separate cases, giving us two test cases:

109

Test case | Test subject
B.1 S1
B.2 S3

Table 9.7: Test cases for experiment B.

As we have observed that our system is sensitive to the positioning of the
eMRTD in relation to the smartphone we choose the best possible position
and use it for every run.

We run each of our test cases 15 times. Any recorded failures come in
addition.

9.1.3.1 Results

Test case | Measurement Range Mean | SEM
B.a 195—233 205 3
B.1 B.b 6072—7778 | 6881 | 101
B.c 7522—9293 | 8350 | 107
B.a 74—110 82 3
B.2 B.b 5801—6424 | 6076 | 46
B.c 6561—7269 | 6854 | 52

Table 9.8: Results from experiment B.

For test case B.1 there were three instances of failure, once due to the NFC
subsystem losing the tag and twice from a READ_BINARY failure on the IC
side. B.2 had no failures.

Looking at the results a few characteristics are apparent:
¢ The performance of the Standard procedure is very stable, with both
subjects displaying a tight grouping of results.
* The long read operations, like reading DG2, are by far the most

expensive.

¢ The implementation of the eMRTD itself plays a role in performance,
where the newer generation ePassport performed the procedure 1 to
2 seconds faster on average. In particular the BAC execution was over
twice as fast on the newer ePassport.

Generalizing the results we see that the Standard procedure is performed
in the range of 6 to 8 seconds (approximate sum of means from B.1 and B.2
including SEM).

Data transfer rate

The DG2 read operation is largely comprised of reading the image data.
Knowing this we calculate a rough approximation of the effective transfer

110

rate, using the mean of the DG2 read duration and the known image sizes
(Table©.2). The results are shown in Table[9.9).

Test case | Image size | Duration | Transfer rate
B.1 17786 bytes 6.8s 20.9 kbit/s
B.2 18237 bytes 6.0s 24.3 kbit/s

Table 9.9: The approximate transfer rates of DG2 data.

As stated, these calculated transfer rates are approximations and should
not be considered as accurate. They do, however, underline that the
effective rate of transfer is far from the ISO/IEC 14443-4 minimum specified
rate, which is 106 kbit/s.

9.14 Experiment C: Advanced Inspection Procedure

With this experiment we wish to measure the performance and reliability
when executing the Advanced inspection procedure as defined by BSI TR-
03110 [5]. That is: access control (BAC or PACE), Chip Authentication, Ter-
minal Authentication, reading of sensitive and less-sensitive data groups
and Passive Authentication. We are not using Active Authentication. The
procedure is presented in[3.5.2}

As is done in Experiment B we use only BAC for the initial access
control, which avoids the PACE instability issues affecting our results. Note
that this is not in keeping with the ICAO Doc 9303 and BSI TR-03110
standard as they specify that PACE should always be preferred where
available.

Only Sz supports the Advanced procedure, thus it is the only subject
used.

Table shows the measurements defined for this experiment:

Measurement Unit Description
Ca Milliseconds | Execution time of reading DG2.
Cb Milliseconds | Execution time of EAC (CA and TA).
C.c Milliseconds | Execution time of reading DG3.
Cd Milliseconds | Execution time of entire procedure.

Table 9.10: Measurements for experiment C.

As for experiment B, in case of failure we record this in a separate data set,
along with an explanation of the point of failure (if any), and re-run the
experiment.

We have only the single test case and a single subject (S3). The
experiment is run 20 times.

9.1.4.1 Results
The results are given in Table

111

Measurement Range Mean | SEM
Ca 5616—7483 | 6149 | 96
Cb 1140—3190 | 1444 | 129
C.c 3064—3876 | 3288 | 40
Cd 14024—19445 | 15125 | 326

Table 9.11: Results from experiment C.

There were no failed executions of this experiments.

Our main observations are:

* The mean of the execution time for the Advanced procedure is
151254326 ms, suggesting a 15 second execution on average, but we
did see outliers up to the 20 seconds range.

¢ Performing the EAC protocol itself adds roughly 1.5 seconds to the
procedure, which is a fairly small proportion yet still significant.

* As anticipated the reading of large data groups (image and finger-
print) is the definite bottleneck of the procedure.

9.1.5 Experiment D: PACE execution

Throughout our design and implementation process, achieving a stable
and satisfactory implementation of PACE has been an ongoing challenge.
Though we have been able to get the implementation to a somewhat
functional state there are major instability issues which are still unsolved.

We observe that PACE will run successfully on occasion, and fatally
fail in various stages of the protocol otherwise. We also observe that the
relation between the physical position of the device and the eMRTD seems
to be of significance. In addition, PACE runs fairly slowlyﬂ

This experiment is designed as a reaction to these issues, and attempts
to give indicative answers to the following questions:

e How often does PACE fail? That is: what is the failure rate?
o If it fails, what are the points of failure?

e If it succeeds, how long does it take?

We only take a single measurement:

Measurement Unit Description
D.a Milliseconds | Execution time of PACE.

Table 9.12: Measurements for experiment D.

IIn comparison to BAC, EAC

112

In the case of PACE failure we record it in a separate data set, along with
the reason (if we are able to deduct one) and re-run the experiment.

As stated we only have access to one PACE-capable test subject (S3). We
therefore run the experiment only with S3, and until we have 15 successful
executions.

We know from observation that the execution of PACE is highly sensitive to
the physical placement of the eMRTD in relation to the handset. However,
measuring and examining the physical properties at play is out of scope of
this project. Therefore we attempt to select the best possible positioning of
the passport for this experiment. In other words, the results will be best-
case (as far as we know) for our implementation.

9.1.5.1 Results

Measurement Range Mean | SEM
D.a 2265—8781 | 3517 | 497
Failures 24
Successes 15
Failure rate 61.5%

Table 9.13: Results from experiment D. Note that the failure rate is not given
in the statistical sense of the word but is rather an observation of the failures
vs. successes for this small experiment.

We observe that 24 out of 39 total attempts at performing PACE failed and
that 21 out of 24 failures happened in the fourth step of PACE as specified
in [5]. This particular step is the Mutual Authentication step, and the error
is indicated to be on the IC side, which returns the generic “authentication
failed” APDU error code 0x6300.

Though we cannot surely rule out that this is due to an IS side flaw in
performing the procedure, we do know that PACE works on occasion with
the exact same parameters.

Execution time

113

iy
[é)]

[
14 I
13 I
12 I
11

o 10—

$ 9 mEEE——

g 8 I

5 7 I

‘as'; 6 I

S 5 I
g
3 I
2 I
1 I

o

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PACE execution time (ms)

Figure 9.1: The execution times for the successful runs of PACE.

Figure |9.1| presents the successful measurements of PACE execution time
taken during the experiment.

It clearly demonstrates the recorded mean execution time of 3.540.5
seconds, and also highlights the outliers which in a couple of cases are very
significant.

Thus, the experiment results indicatively confirm our observation that
our implementation of PACE is highly unstable in two senses: it fails more
than it succeeds, and when it does succeed the execution is both slow and
somewhat unpredictable.

9.2 Discussion of the results

In this section we summarize and discuss the results from the four
experiments in The more detailed results (including the calculated
means) are given and discussed in the respective experiment sections.

9.21 MRZ scanning

Experiment A has been devised and conducted in order to gauge the
performance of our MRZ scanner.

Through our preliminary observations we identified two environ-
mental factors which seemed to affect the recognition time: light condi-
tions and stability. Therefore our experiment was split into four test cases,
allowing us to compare the performance of the recognition under the vari-
ations of these conditions and giving a more comprehensive picture of the
performance.

A comparative chart is given in Figure showing the mean recogni-
tion time (and SEM) of the test cases.

7000
6000

5000

4000

3000

2000

1000 .
0

Low light/stable Low light/unstable Daylight/stable Daylight/unstable

Recognition time (ms)

Figure 9.2: Comparison of the MRZ recognition test cases.

Comparing the four test cases we make a few observations. First, lighting
is the most significant of the environmental conditions we have varied.

Instability does negatively affect performance but not consistently. That
is, instability decreases the chances of capturing a “correct” image, but this
effect is not always severe. For instance the “daylight/stable” and “day-
light/unstable” test cases yielded reasonably similar results, reaching into
the same ranges (wWhen the SEM is considered). The same is true for both
“low light” test cases.

The mean recognition times found for the four cases ultimately showed
that:

* Under the “best case” conditions the recognition time is quite low at
around 2 seconds.

* With the “worst case” conditions the recognition time is considerably
higher at around 5-6 seconds, but does vary more.

We do recognize, however, that there is some degree of “happy-path”
testing in the experiment as the test cases are very controlled.

In a real world scenario many other factors would come into play,
including variation in lighting happening during the recognition process or
reflective glare in the (plastic) data page in direct sunlight (or when using
a directed light source at night time).

Also, it should be noted that the operator of the experiment performed
the process many times in a row, which gives some degree of intuition for
the optimal positioning of the camera under the specific conditions.

Additionally, we have confirmed through this experiment what we

anticipated during the implementation of the MRZ scanner: the quality
of the input image has a big impact on performance.

115

Therefore, we can conclude that a very high quality camera is desirable
for a device which is to run an app like ours. In particular, a camera
which operates well under low light conditions and that outputs fairly high
resolution images. Notably, the camera in our test device (the Nexus 5X) is
deemed to be in the upper tiers, but is in no way the best on the market,
suggesting a potential for even faster and more accurate recognition on
other devices.

9.2.2 Contactless inspection

Two experiments were devised and conducted to examine the duration of
inspection. The first measured the execution of the Standard procedure and
the second measured the Advanced procedure.

The results showed that the standard procedure was performed in ap-
proximately 7.5 seconds, whilst the Advanced procedure was approxim-
ately twice that, at around 15 seconds.

This confirms the preliminary observation that the definite bottleneck
of contactless inspection is the reading of the larger data groups (2, 3 and
4).

Figures and illustrates these results for the Standard and
Advanced procedures respectively.

5 ~6s i
| — - 1
[[
| 3 DG2 |
I 0 I
I I
L — —_—d

~75s
Figure 9.3: Duration of the Standard inspection procedure.
~6s i ~15si ~3s

r= - T T T ma—a—— A
[[
| DG3 |
| it EAC (single finger) |
I I
L Enee—

\/

~15s

Figure 9.4: Duration of the Advanced inspection procedure.

For the Advanced procedure we also observed that the duration of EAC
execution is significant, though not when compared to the large DG reads.

Figure 9.5|is a summary of the entire inspection procedure. It shows the

aforementioned approximate duration of the two contactless procedures
and also the duration of the MRZ recognition.

116

The selected MRZ recognition time is based on the “best case” results,
and the procedures are based on the calculated means. As such, this
illustration does not paint the whole picture, but gives an indication based
on our results.

As can be seen from these indications: for the Standard procedure a
total inspection time of around 10 seconds is achievable, whilst for the
Advanced, however, 18 to 20 seconds is more likely.

. ~3s | ~75s i ~75s i
1 1

. : . :
| | 1 |
: : Standard : :
I | BAC, DG1, DG2, PA : I
1

| MRz | : |
| X

/| scanning |, |
1 1

I 1 Advanced :
| : BAC, DG1, DG2, EAC, DG3, PA !
1 1 1
0 5 10 15 20

Figure 9.5: Approximate duration of inspection. The MRZ scanning time
chosen is based on the results from the “best case” scenario.

Wishing to further investigate the apparent bottleneck of performing large
data reads we calculated estimations for the transfer rate of DG2 in
experiment B.

Not surprisingly these numbers, though inaccurate, revealed that the
rate is much lower than the theoretical limit of the technology.

ISO/IEC 14443-4 specifies transfer rates of 106 kbit/s, 212 kbit/s and
424 kbit/s. Unfortunately we do not know which one was used for our
experiments, and Android does not expose an API which allows us to
investigate this. What we do know, however, is that our real life estimated
rates of 20-24 kbit/s is very low in comparison.

Bear in mind, however, that the theoretical rates are pure transfer rates,
and we are performing a complex protocol which does reads and writes in
both directions. This means one should not expect near-limit performance
in any case, but there is definitely room for improvement.

9.2.3 PACE execution

Experiment D was devised to shed light on the already known problems
with the PACE protocol for our prototype: it is slow and very unreliable.
The results of the experiment confirmed this, with 24 of 39 attempts at
PACE failing, most on the same (and last) part of the protocol.
Notably, this happened even under the conditions where we knew and
attempted to use the “optimal position” of the passport in relation to the
phone.

117

For our experiment the mean PACE duration (of the successful
executions) was 3.5+0.5 seconds, demonstrating that even when it does
work the performance is below reasonable.

Summarizing these results: PACE is (barely) functional in our prototype
and more ground needs breaking to reach a serviceable implementation.

9.3 Main findings

Taking into consideration our experiment results in the discussion of
said results in 9.2 and the requirements set forth in we present our
main findings from the experiments.

* Our implementation of MRZ recognition meets the approximated
requirement of a 2-3 second execution under certain conditions. Yet,
in low light or with an unstable camera the recognition time is higher.

* The approximate requirement of a 10 second execution of the
contactless inspection procedure is surpassed for early generation
documents (BAC, PA), but not met for the current generation
(BAC/SAC, EAC). The bottleneck is most likely the low data transfer
rate.

* Our prototype performs inspection with reasonable stability under
the right conditions. With the exception of PACE, the inspection
procedure very rarely fails. We do recognize, however, that the
system is very sensitive to movement and the positioning of the
device in relation to the document. We assume this indicates that the
coupling between the device and eMRTD antennas is sub-optimal.

e PACE will run under certain conditions, but most often fails for
unknown reasons. This could be related to the same factors which
cause sensitivity for other parts of the procedure, but a IS side
software problem is also likely.

118

Part IV

Conclusion

119

Chapter 10

Discussion

The objective for this Master’s project was to investigate and implement a
prototype eMRTD inspection system for Android.

In doing so we aimed to show how such a system could be realized,
and to uncover the inherent challenges and limitations imposed on it.

10.1 Results

The primary results of the project lie in our proposed solution.

We have researched, designed, implemented and evaluated a prototype
which incorporates a wide range of technologies and techniques in order
to perform inspection in an efficient manner.

It employs the camera of the device and optical character recognition to
rapidly read the MRZ, performs the entire ICAO and BSI suites of protocols
during contactless inspection and last but not least wraps everything into
an easy to use interface which provides ample feedback to the user.

That said, the solution is in no way perfect, and we have identified several
challenges throughout the project. Some we have solved, some we have
attempted to mitigate, whilst some remain unsolved.

The nature of these vary, and so does our knowledge of their underlying
reasons. In the next sections we discuss the major challenges we have met.

10.2 Software availability and quality

Given the scope of this Master’s project, the implementation of a complete
solution for eMRTD inspection has been a considerable endeavour. There-
fore, we have been completely reliant on third party, open source and free
software components to provide abstractions for the some of the low-level
complexities of smart card communication and cryptographic protocols.

The paradoxical nature of this is, however, that when such abstractions
fail the benefits are often outweighed by the time consuming task of
identifying and addressing issues in third party code.

121

This double-edged sword of open source software has been a theme
throughout the development of our prototype.

In particular, we have built our contactless inspection procedure on
top of what is in reality the only freely available and comprehensive
implementation of the ICAO and BSI standardsﬂ We could not have
built such an extensive application without it (given the resources at our
disposal), yet we have also spent considerable time analysing and fixing
flaws in it.

This brings us to an important recognition: in the process of imple-
menting our prototype the lack of tools, documentation and a proper refer-
ence implementation for the eMRTD standards has been perhaps the most
prominent challenge.

The argument could also be made that this is a generic problem for
the implementation eMRTD software. Though the standards are open, the
implementations are closed, making the utilization of the technologies a
challenging effort without the resources of a vendor.

10.3 Contactless performance and reliability

Though the NFC interface in an Android smartphone is technically
compatible with eMRTDs, this is clearly not the intended use.

NFC in phones and other consumer grade devices is first and foremost
used for reading simple tags or for payment applications, and seldom for
complex communication and transfer of large data.

The unsatisfactory robustness and performance of the contactless
connection became apparent already in early stages of development, and
has been an issue throughout.

The system is very sensitive to the exact positioning of the device in
relation to the eMRTD, and movement during inspection or picking the
wrong positioning often causes the connection to fail.

Also, as our experiments have indicated this does not only affect
reliability but also imposes a significant performance hit. We have
identified the reading of the large data groups as being the main bottleneck,
and approximation of the achieved transfer rate was significantly lower
than what the standard specifies, suggesting there is definite room for
improvement.

Of course, the potential for improvement is also suggested by the
comparatively much faster proprietary inspection systems on the market,
which also highlights an important question: there might or might not be a
physical limitation at play.

A natural assumption to make is, as stated earlier, that the NFC
interfaces of these consumer grade devices are simply not made for this
use, and thus unsuitable when higher performance is required. The NFC
controllers might not be able to deliver the required power, and the device
antennas might offer insufficient inductive coupling with those of the
eMRTDs.

MRTD

122

That said, we could also make the assumption that future performance
improvements in consumer grade NFC will help mitigate the issue. New
handsets are released continuously and we have already seen the quality
and performance of NFC interfaces improve significantly over the past
few years. That this development will continue is not an unreasonable
assumption to make.

Also, there are promising developments on the horizon of NFC. The
Very High Bit Rate (VHBR) [40] technology enhances the ISO/IEC 14443
contactless interface and promises significant increases in data transfer
rate with a theoretical 6.8 Mbit/s, as opposed to the 848 kbit/s maximum
offered by the current standards.

Furthermore, the VHBR technology is already being envisioned by
major vendors such as Gemalto and Infineon to make its way into the
fourth generation of ePassports and elDs.

The prospect of fast data transfers over NFC is likely to make the
technology attractive also for consumer grade devices, which makes VHBR
NFC a very promising future proposition for a system like ours.

10.4 MRZ recognition on a mobile device

As we know, the MRZ is designed to be machine-readable. Therefore, in
the realm of OCR, MRZ recognition is a trivial task. However, the machines
performing MRZ recognition were never thought to be mobile, and as such
the characteristics of the MRZ are not necessarily optimized for mobile
recognition (as opposed to QR codes, for instance).

In our work we have identified that the mobile use case imposes a
new set of requirement on MRZ recognition. The stability of the camera
and the lighting conditions are among the variable factors which must be
considered. In addition, running a resource demanding task such as OCR
on a mobile device means the balance between performance and accuracy
must be found.

Our implementation demonstrates an approach to solving these chal-
lenges, and we have shown through experiments that it is sound. It is
capable of performing recognition within our requirements, given that the
conditions are good enough. In worse conditions, however, recognition
was showed to be slower. In particular, we identified the lighting condi-
tions to make the biggest impact on performance for the experiment.

That said, we have also made the important acknowledgement that
the experiment is somewhat biased: the operator repeated the experiment
many times in a row, learning the “correct” angle and distance of the
camera. This makes the experiment useful in judging the best case scenario,
but it might not be indicative of the real world performance.

As mentioned we optimized the camera angle and distance during the
experiments, and capturing the “correct” image is admittedly the crutch of
our implementation. Though we provide a few tools for the user to do so,
capturing a somewhat straight-angled and correctly justified image of the
MRZ can be a challenge, especially in movement.

123

In [41], Hartl et al. proposes a solution to this very problem. Their
real-time algorithm for MRZ recognition is devised specifically to allow
detection of the MRZ using a mobile device and with sub-optimal viewing
angles. As such, it could serve to greatly increase the reliability of the MRZ
scanner in our prototype.

10.5 PACE uncertainties

In order to be compliant with ICAO standards, not only should an
inspection system support PACE, but it should also never prefer BAC. That
is, in the case of PACE being present on the eMRTD, it should always be
used.

For the current state of our prototype this standard is more or less
unattainable as PACE is both unstable and significantly slower than what
is acceptable. This unserviceable state of our PACE implementation was
also confirmed by our experiments, in which we had more failed runs than
successes, and a mean execution time of 3-4 seconds.

In our system requirements we identified compliance with ICAO stand-
ards a key qualification for an inspection system, making the lack of proper
support an unfortunate deviation that should be addressed.

At this point we do not know the exact reasons for the relatively poor
performance of PACE in our prototype. We do, however, have a few
theories and observations which are worth noting.

First, the instability and slowness issues previously mentioned are, of
course, also present for PACE. The protocol does not perform a lot of I/0,
but does do considerable computation. There is a possibility that low
power delivery, paired with high power requirements of the calculations
plays a role.

On the contrary, it is also possible that the underlying libraries are
exceedingly slow when performing the elliptic curve operations, making
the eMRTD time out.

At this point the relative weight of the factors affecting performance
cannot be determined exactly, and it is clear that further investigation is
needed in order to determine the cause.

124

Chapter 11

Conclusion

In this Master’s project we have researched, designed and implemented a
prototype eMRTD inspection app for Android.

The app performs optical recognition of the MRZ using the device
camera and contactless inspection as per the ICAO and BSI standards
over NFC, making it a complete and functional solution for reading and
verifying ePassports in a mobile environment.

We have shown through experiments that our solution performs well
under certain conditions, but leaves room for improvement in others.

In particular we have identified the data transfer rate of the contactless
interface to be a major bottleneck for efficient operation, causing the
duration of inspection to be higher than desired. Also, we have shown
that the system is highly sensitive to the relative positioning of the device
and ePassport.

From this we draw the conclusion that the current state-of-the-art
smartphone is unsuitable for the purpose of an eMRTD inspection system.
However, great promise is shown in the next generation of eMRTDs,
the advent of higher data rate NFC technologies and the inevitable
development of Android devices supporting these.

11.1 Further work

There are many important and interesting aspects of mobile eMRTD
inspection which we have not discussed. In the following sections we
present a few of these, in addition to a recommendation for further
investigation of the known issues of our prototype.

11.1.1 The prospect of biometric authentication

Due to the scope of this Master’s project, we have selectively disregarded
the possibility for biometric authentication.

Naturally, reading the fingerprints from a biometric passports has no
practical use if they cannot be verified. Also, though the face image is
displayed to the operator upon inspection, there is also the possibility of
performing facial recognition on the mobile device itself.

125

For the case of the fingerprint authentication, integrated fingerprint
readers are quickly becoming a common addition in smartphones. They are
more or less exclusively used for authentication of the device user herself
at this point, but research could be put into uncovering whether or not it is
possible to expand their use for authentication of ePassport fingerprints.

We do know that this is tricky at the current time, as Android does
not offer an API for raw fingerprint recognition. The fingerprint sensor is
used only for direct user authentication, comparing against a fingerprint
template stored in the embedded Secure Element.

Another possible avenue to explore would be the use of an external
fingerprint reader connected over the USB—OTd_rI interface.

In addition, there are specialized devices available which contain an
integrated fingerprint reader that is not directly governed by the Android
system.

11.1.2 Security

For this project, the security of our system has not been regarded. Yet, we
should recognize that the security implications of using an Android device
for eMRTD inspection needs investigation.

There are many possible security concerns for such a system, and
clearly it must be hardened sufficiently to safely handle sensitive personal
information.

The primary concern, however, is the storage and handling of highly
sensitive certificates and keys. For the ICAO PKI (CSCA certificates) this
is a matter of being able to obtain or store public certificates in a trusted
manner.

For the EAC PKI, on the other hand, the implications are much more
severe as the inspection system is required to access and handle private
keys, which in turn give access to sensitive biometric data. Naturally, the
theft of a device containing such a key is a serious threat, meaning the
requirements for storage and access are very strict.

As an example, a solution utilizing the hardware backed Android
keystore could be explored.

1USB On-The-Go. Interface which allows the Android device to operate as a host for
USB devices.

126

Appendices

127

Appendix A

POD project description

129

Masteroppgave - MRTD

G3kko-prosjektet, som er en del av IDeALT-programmet i Politidirektoratet, kan tilby en
masteroppgave. Oppgaven er én av tre oppgaver som inngar i samme fagmiljg og med tilstgtende
problemstillinger.

Pass fra alle land, (det nye) Nasjonalt ID-kort, oppholdskort som utstedes av UDI, grenseboerbevis og
mange andre identitets- og reisedokumenter inneholder en brikke og stgtte for NFC. | brikken finnes
i tillegg til informasjonen som er trykket i klartekst pa dokumentet ogsa biometriske opplysninger
(fingeravtrykk, og annet). Informasjonen er beskyttet med kryptografi pa forskjellige mater.
Teknologien er i stor detalj beskrevet i retningslinjene gitt av FNs luftfartsorganisasjon (ICAQ), i deres
handbok nummer 9303, og i en (lang) rekke andre internasjonale standarder. Fellesnevneren er
«Machine Readable Travel Documents», eller bare MRTD.

Politiet gnsker & teste ut bruken av standard «mobiltelefon» som leseutstyr for MRTD. Oppgaven gar
helt kort ut pa a lage en «app» for Android som viser at dette er en funksjonelt fullgod Igsning.

Hovedutfordringene i oppgaven er:

e Kommunikasjonen skjer over ikke-trivielle protokoller (pa toppen av NFC);
e De relevante opplysningene er beskyttet med kryptografi, bade symmetrisk og asymmetrisk;
e Politiet opererer under strenge krav til internkontroll (logging, sporbarhet, privathet).

For pa kunne Igse oppgaven ma man kunne lage en «app» pa Android som benytter NFC, ha
kjennskap til kryptografiske prinsipper og mekanismer, samt kunne bruke standarder.

Det vil trolig bli ngdvendig med mgter bade i Oslo og i Toscana, ltalia.

Spgrsmal?
Send dem umiddelbart til:

e Fgrsteamanuensis Anders Andersen (anders.andersen@uit.no) som vet alt om 3 vaere

masterstudent;
e Politiinspektgr Havard Nordbg (havard.nordbo@politiet.no) som vet alt om G3kko-
prosjektet og IDeALT-programmet, og

e Seniorradgiver @yvind Naess PhD (oivind.naess@politiet.no) og Dr. Tage Stabell-Kulg

(tage.stabell-kulo@politiet.no) som vet alt om selve oppgaven. Begge har tidligere undervist

pa universitet og veiledet studenter.

20. mai 2014

Appendix B

Inspection procedure flowchart

131

Start eMRTD Read MRZ

l

Read EF.CardAccess

PACE supported? Yes PACE
Nlo No—<" PACE successful?
BAC Yes
BAC successful? —_—YeSe———— Read DG1 and DG2

No

AA }: Yes AA supported?

No— EAC supported? PA

Yes

EAC
CA
) EAC successful? —Yes
TA
K J No Read EAC-protected DGs
(3 and/or 4)

Inspection finished

Appendix C

Downloadable content

C.1 Experiments raw data

http://folk.uio.no/halvdang/mrtd-inspector-experiments.ods

133

http://folk.uio.no/halvdang/mrtd-inspector-experiments.ods

134

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

International Civil Aviation Organization. ‘MRTD REPORT: The
New eUNLP: Vol. 8, No. 1. In: MRTD Report (2013).

Camilla Flaatten. Image from online news article: “Har du provd disse
noen gang?” 4th Sept. 2014. URL: http://www.aftenposten.no/reise/Har-
du-provd-disse-noen-gang-71925.html| (visited on 14/04/2016).

Gemalto. Electronic travel document programs. URL: http: / / www .
gemalto . com / brochures / download / gov - etravel - doc . pdf (visited on
14/04/2016).

International Civil Aviation Organization. Doc 9303, Machine Read-
able Travel Documents. Seventh edition. International Civil Aviation
Organization, 2015.

German Federal Office for Information Security (BSI). Advanced
Security Mechanisms for Machine Readable Travel Documents v. 2.10.
Tech. rep. 2008. URL: https:/ /www. bsi.bund.de /EN /Publications /
TechnicalGuidelines/ TR03110/BSITR03110.html.

International Civil Aviation Organization. ‘Part 1: Introduction’.
In: Doc 9303, Machine Readable Travel Documents. Seventh edition.
International Civil Aviation Organization, 2015.

International Civil Aviation Organization. ‘Part 3: Specifications
Common to all MRTDs’. In: Doc 9303, Machine Readable Travel Doc-
uments. Seventh edition. International Civil Aviation Organization,
2015.

International Civil Aviation Organization. ‘Part 4: Specifications for
Machine Readable Passports (MRPs) and other TD3 Size MRTDs'.
In: Doc 9303, Machine Readable Travel Documents. Seventh edition.
International Civil Aviation Organization, 2015.

International Civil Aviation Organization. ‘Part 9: Deployment of
Biometric Identification and Electronic Storage of Data in eMRTDs'.
In: Doc 9303, Machine Readable Travel Documents. Seventh edition.
International Civil Aviation Organization, 2015.

International Civil Aviation Organization. ‘Part 10: Logical Data
Structure (LDS) for Storage of Biometrics and Other Data in the Con-
tactless Integrated Circuit (IC)". In: Doc 9303, Machine Readable Travel
Documents. Seventh edition. International Civil Aviation Organiza-
tion, 2015.

135

http://www.aftenposten.no/reise/Har-du-provd-disse-noen-gang-71925.html
http://www.aftenposten.no/reise/Har-du-provd-disse-noen-gang-71925.html
http://www.gemalto.com/brochures/download/gov-etravel-doc.pdf
http://www.gemalto.com/brochures/download/gov-etravel-doc.pdf
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html

[15]

International Civil Aviation Organization. ‘Part 11: Security Mech-
anisms for MRTDs’. In: Doc 9303, Machine Readable Travel Documents.
Seventh edition. International Civil Aviation Organization, 2015.

International Civil Aviation Organization. ‘Part 12: Public Key In-
frastructure for MRTDs’. In: Doc 9303, Machine Readable Travel Doc-
uments. Seventh edition. International Civil Aviation Organization,
2015.

Gildas Avoine, Kassem Kalach and Jean-Jacques Quisquater. ‘Finan-
cial Cryptography and Data Security’. In: ed. by Gene Tsudik. Berlin,
Heidelberg: Springer-Verlag, 2008. Chap. ePassport: Securing Inter-
national Contacts with Contactless Chips, pp. 141-155. ISBN: 978-3-
540-85229-2. DOI: 10.1007/978-3-540-85230-8 11. URL: http://dx.doi.
org/10.1007/978-3-540-85230-8 11.

Tom Chothia and Vitaliy Smirnov. ‘A Traceability Attack Against
e-Passports’. In: Proceedings of the 14th International Conference on
Financial Cryptography and Data Security. FC'10. Tenerife, Spain:
Springer-Verlag, 2010, pp. 20-34. ISBN: 3-642-14576-0, 978-3-642-
14576-6. DOI: 10.1007 /978-3-642-14577-3 5. URL: http://dx.doi.
org/10.1007/978-3-642-14577-3 5.

International Civil Aviation Organization. Supplemental Access Con-
trol for Machine Readable Travel Documents v. 1.1. Tech. rep. 15th Apr.
2014. URL: http : / / www . icao . int / Security / mrtd / Downloads /
Technical %20Reports / NEW %20TRs%20post %20 TAG %2022 / TR % 20-
%20Supplemental%20Access%20Control%20V1.1.pdf.

International Civil Aviation Organization. PKD Participants. URL:
http: / /www.icao.int / Security / mrtd / Pages / PKD - Participants . aspx
(visited on 11/04/2016).

International Civil Aviation Organization. ICAO PKD data download.
URL: https://pkddownloadsg.icao.int/ (visited on 11/04/2016).

Roderick Heitmeyer. ‘ICAO Civil Aviation and MRTD Standards’. In:
Keesing Journal of Documents and Identity 31 (2010).

The European Commission. Commission Decision of 4.8.2011. 4th Aug.
2011. URL: http:/ /ec.europa.eu/dgs/home- affairs / e- library / docs /
comm native ¢ 2011 5499 f en.pdf.

The German Federal Ministry of The Interior. Image of specimen
German eID card. URL: http:/ / www . personalausweisportal . de / DE /
Service / Presse / Bildmaterial / bildmaterial — node . html (visited on
13/04/2016).

The Council of the European Union. Council Regulation (EC) No
2252/2004 of 13 December 2004 on standards for security features and
biometrics in passports and travel documents issued by Member States.
13th Dec. 2004. URL: http://eur- lex.europa.eu /legal- content /EN /
ALL/?uri=CELEX:32004R2252.

136

http://dx.doi.org/10.1007/978-3-540-85230-8_11
http://dx.doi.org/10.1007/978-3-540-85230-8_11
http://dx.doi.org/10.1007/978-3-540-85230-8_11
http://dx.doi.org/10.1007/978-3-642-14577-3_5
http://dx.doi.org/10.1007/978-3-642-14577-3_5
http://dx.doi.org/10.1007/978-3-642-14577-3_5
http://www.icao.int/Security/mrtd/Downloads/Technical%20Reports/NEW%20TRs%20post%20TAG%2022/TR%20-%20Supplemental%20Access%20Control%20V1.1.pdf
http://www.icao.int/Security/mrtd/Downloads/Technical%20Reports/NEW%20TRs%20post%20TAG%2022/TR%20-%20Supplemental%20Access%20Control%20V1.1.pdf
http://www.icao.int/Security/mrtd/Downloads/Technical%20Reports/NEW%20TRs%20post%20TAG%2022/TR%20-%20Supplemental%20Access%20Control%20V1.1.pdf
http://www.icao.int/Security/mrtd/Pages/PKD-Participants.aspx
https://pkddownloadsg.icao.int/
http://ec.europa.eu/dgs/home-affairs/e-library/docs/comm_native_c_2011_5499_f_en.pdf
http://ec.europa.eu/dgs/home-affairs/e-library/docs/comm_native_c_2011_5499_f_en.pdf
http://www.personalausweisportal.de/DE/Service/Presse/Bildmaterial/bildmaterial_node.html
http://www.personalausweisportal.de/DE/Service/Presse/Bildmaterial/bildmaterial_node.html
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32004R2252
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32004R2252

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]
[34]
[35]

[36]
[37]

[38]

Gartner. Press release: “Gartner Says Worldwide Smartphone Sales Grew
9.7 Percent in Fourth Quarter of 2015”. 18th Feb. 2016. URL: http://
www.gartner.com/newsroom/id /3215217 (visited on 19/04/2016).

Maximilian Stein. ‘Mobile devices as secure elD reader using trusted
execution environments’. In: Lecture Notes in Informatics. Open Identity
Summit 2013. Gesellschaft fiir Informatik, Bonn, pp. 11-19.

Luis Teran and Andrzej Drygajlo. ‘On Development of Inspection
System for Biometric Passports using Java’. In: Biometric ID Manage-
ment and Multimodal Communication. Springer, 2009, pp. 260-267.

Jan Voscek. ‘Identity verification based on ePassports’. Master’s
thesis. Masaryk University, Faculty of Informatics, Brno, 2014. URL:
http://is.muni.cz/th/325238/fi m/.

German Federal Office for Information Security (BSI). Requirements
for Smart Card Readers Supporting eID and eSign Based on Extended
Access Control. Tech. rep. 2013. URL: https : / / www . bsi . bund .
de / SharedDocs / Downloads / EN / BSI / Publications / TechGuidelines /
TRO03119/BSI-TR-03119 V1 pdf.pdf.

DILETTA TDR700 - ePassport Reader with UV-Colour Feature. URL: http:
/ /www .diletta.com /DE /Passport Reader TDR700.htm| (visited on
01/05/2016).

Annar Bohlin-Hansen and Jorn Anders Jenssen. Presentation: IDeALT-
programmet (in Norwegian). 13th Nov. 2013. URL: https: / / wiki. uio.
no/mn /ifi / AFSecurity /images /f /4 / AFSec20131113- Bohlin- Hansen-
IDeALT .pdf| (visited on 01/05/2016).

Legion of The Bouncy Castle website. URL: https: / /www.bouncycastle.
org/.

Spongy Castle website. URL: https://rtyley.github.io/spongycastle/.

Jar Jar Links website. URL: https://github.com /shevek/jarjar.

Google’s Tesseract OCR engine is a quantum leap forward. 28th Sept. 2006.
URL: https:/ /www. linux.com / news / googles - tesseract - ocr - engine-
quantum-leap-forward (visited on 20/04/2016).

Tesseract code repository. URL: https://github.com/tesseract-ocr/.
tess-two code repository. URL: https://github.com /rmtheis/tess-two.
The Leptonica Image Processing Library. URL: http:/ / www . leptonica.

com/.
ReactiveX website. URL: http://reactivex.io/.
How to use the tools provided to train Tesseract 3.0x for a new language.

26th Mar. 2016. URL: https://github.com /tesseract-ocr/tesseract /wiki/
Training Tesseract#training-procedure| (visited on 29/03/2016).

tesseract-ocr parameters in 3.02 version. 29th Dec. 2012. URL: http://

www.sk-spell.sk.cx/tesseract-ocr- parameters-in-302-version| (visited on
10/02/2016).

137

http://www.gartner.com/newsroom/id/3215217
http://www.gartner.com/newsroom/id/3215217
http://is.muni.cz/th/325238/fi_m/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03119/BSI-TR-03119_V1_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03119/BSI-TR-03119_V1_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03119/BSI-TR-03119_V1_pdf.pdf
http://www.diletta.com/DE/Passport_Reader_TDR700.htm
http://www.diletta.com/DE/Passport_Reader_TDR700.htm
https://wiki.uio.no/mn/ifi/AFSecurity/images/f/f4/AFSec20131113-Bohlin-Hansen-IDeALT.pdf
https://wiki.uio.no/mn/ifi/AFSecurity/images/f/f4/AFSec20131113-Bohlin-Hansen-IDeALT.pdf
https://wiki.uio.no/mn/ifi/AFSecurity/images/f/f4/AFSec20131113-Bohlin-Hansen-IDeALT.pdf
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://rtyley.github.io/spongycastle/
https://github.com/shevek/jarjar
https://www.linux.com/news/googles-tesseract-ocr-engine-quantum-leap-forward
https://www.linux.com/news/googles-tesseract-ocr-engine-quantum-leap-forward
https://github.com/tesseract-ocr/
https://github.com/rmtheis/tess-two
http://www.leptonica.com/
http://www.leptonica.com/
http://reactivex.io/
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract#training-procedure
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract#training-procedure
http://www.sk-spell.sk.cx/tesseract-ocr-parameters-in-302-version
http://www.sk-spell.sk.cx/tesseract-ocr-parameters-in-302-version

[39]

D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. REC 5280. http:/ /www. rfc-
editor.org/rfc/rfc5280.txt. RFC Editor, May 2008. URL: http://www.rfc-
editor.org/rfc/rfc5280.txt.

Christian Saminger et al. ‘Introduction of very high bit rates for NFC
and RFID". In: e & i Elektrotechnik und Informationstechnik 130.7 (2013),
pp- 218-223. 1SSN: 1613-7620. DOI: 10.1007 /s00502-013-0154-0. URL:
http://dx.doi.org/10.1007/s00502-013-0154-0.

Andreas Hartl, Clemens Arth and Dieter Schmalstieg. ‘Real-time
Detection and Recognition of Machine-Readable Zones with Mobile
Devices’. In: Proceedings of the International Conference on Computer
Vision Theory and Applications. URL: https: / / pdfs . semanticscholar .
org / e4d6 / 0075b43f4e3d881482b5d744a85ca0142967 . pdf (visited on
04/30/2016).

138

http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://dx.doi.org/10.1007/s00502-013-0154-0
http://dx.doi.org/10.1007/s00502-013-0154-0
https://pdfs.semanticscholar.org/e4d6/0075b43f4e3d881482b5d744a85ca0142967.pdf
https://pdfs.semanticscholar.org/e4d6/0075b43f4e3d881482b5d744a85ca0142967.pdf

	List of Figures
	List of Tables
	I Introduction
	Introduction
	Motivation
	Goal
	Approach
	Work done

	II Background
	MRTDs and ICAO Doc 9303
	ICAO and Doc 9303
	MRTDs
	MRZ

	Machine Readable Passports

	Electronic MRTDs
	Logical Data Structure
	DG1 - MRZ contents
	EF.COM - Common information
	EF.SOd - Document Security Object

	Biometric data groups
	Encoding
	DG2 - Face
	DG3 - Fingerprints
	DG4 - Iris

	Security protocols
	Passive Authentication
	Active Authentication
	Basic Access Control
	Supplemental Access Control
	Extended Access Control

	Public Key Infrastructure
	ICAO eMRTD PKI
	EAC PKI

	Inspection procedures
	Standard Inspection Procedure
	Advanced Inspection Procedure

	Development
	Implementations
	EU passports and Council Regulation EU/2252/2004
	The German Identity Card
	The Norwegian implementation

	Contactless smart cards
	Standards
	ISO/IEC 7816
	ISO/IEC 14443
	ISO/IEC 7501

	ISO/IEC 14443 and NFC
	Near Field Communication

	Smart card file systems
	Commands
	Command APDU
	Response APDU

	Secure Messaging

	Android
	Architecture overview
	Security model

	Android software development
	Android SDK
	Android Studio

	Application model
	Life cycles
	Storage

	Related work
	Academic works
	Software
	Open source libraries and applications
	Commercial and proprietary software

	III MRTD Inspector
	Design
	System requirements
	Guiding requirements
	Overview of features
	MRZ OCR reader
	Contactless inspection
	Configuration
	Quality requirements
	Limitation of scope

	User interface and activities
	System architecture
	UI activities
	Application services
	Storage

	Implementation
	Hardware and software used
	Hardware
	Third-party software

	Code overview
	MVP design pattern

	MRZ scanner
	OcrEngine
	Continuous OCR decoding
	Tuning Tesseract

	Contactless inspection
	MrtdReader
	Mrtd model class
	Inspection

	Known flaws and shortcomings
	Some obstacles
	Presentation of MRTD Inspector
	Configuration and utility features
	Inspection workflow

	Evaluation
	Experiments and measurements
	Method
	Experiment A: MRZ recognition
	Experiment B: Standard Inspection Procedure
	Experiment C: Advanced Inspection Procedure
	Experiment D: PACE execution

	Discussion of the results
	MRZ scanning
	Contactless inspection
	PACE execution

	Main findings

	IV Conclusion
	Discussion
	Results
	Software availability and quality
	Contactless performance and reliability
	MRZ recognition on a mobile device
	PACE uncertainties

	Conclusion
	Further work
	The prospect of biometric authentication
	Security

	Appendices
	POD project description
	Inspection procedure flowchart
	Downloadable content
	Experiments raw data

