HID OmniKey 5427

Secure Key Loading Example

Version : 1.0

April 2023

By M. Walker

Contents

OVEBIVIBW ..ttt ettt ettt et e s et e s s b et e s s b et e s s s ba e e s s b e e e s s aba e e s s ba e e s sanbaeessnraeas 3
AULhENTICATION = PRaS@eiiiiiieiieeie ettt ettt ettt e st e e st e st e e s abe e sbeeesabeesabeeesnbeesabeeesnneens 4

Create SEcUre Channel Dase KEYuuiii it e e s e e s b e e e sabbeeessnnaeeeean 4

(01T | E =BT =T] To T ol SRR 5
AULNENTICATION = PRASE 2.ttt sttt st ettt e s bt e sae e saeesate e b e e beenns 6
Send Key over the SECUIre ChanNEl ... it e re e e et e e e etee e e e entae e e e sabaeeeenaraeas 7
Close Session — SENA NUII PACKET.......coi i e e e e etre e e e earee e e e s arae e e e enraeas 8

Omnikey 5427 Secure Key Loading Example Page 2

Overview

The aim of this document is to provide a sample back-and-forth transaction between a Key Loading
Application and Reader for the Secure Channel key loading procedure. Where applicable, commands and
responses are decoded to aid in comprehension. | have used colors to link data from one section to the
next. Anything not highlighted will either be fixed bytes in the APDU that are not directly linked to the
data, or not used in the next section.

The example data set will hopefully prove useful to others whom are trying to implement a secure channel
key loading application. Note that the actual sending and receiving of APDUs are not covered within the
scope of this document.

The procedures listed herein are based on the code examples provided on the HID public GitHub page.
(Note: one line/url, wrapping due to long URL)

https://github.com/hidglobal/HID-OMNIKEY-Sample-
Codes/blob/master/HidGlobal.OK.Readers/SecureSession/SamSecureSession/SamSecureSession.cs

All keys used in this example have been made up as the actual secure session keys are not public.
As such, while you can use this to prove your code works correctly to create, encode and decode the

packets, it is expected it will fail if used to send to an actual reader. Please ensure you have access to
the correct reader keys for live key loading operations.

Extracted from the HID GitHub source code examples we can see there are 6 possible keys.

EndUser 0x80 <-- This is the one | am using in this example
EndUserAdmin 0x81
OemUser 0x82
OemUserAdmin 0x83
HidUser 0x84
HidUserAdmin 0x85

Example data used (remember, example only)

End User Key (0x80) 00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
Set iClass key 33 (0x21) HNA0 Al A2 A3 A4 A5 A6 A7

The system uses AES 128 Bit encryption, some in ECB and some in CBC mode.

The IV for the AES can be either all 00’s or based on a previous operation. At each step, | have
attempted to ensure all keys, 1Vs, data etc has been listed and show where it come from along with the
operations performed on said data. While this has the effect of increasing verbosity, it is the author's
hope that it will avoid confusion as to exactly what data has been used. If the IV (for example) is not
100% clear, look back to the previous steps/actions and see if you can find where it came from.

Omnikey 5427 Secure Key Loading Example Page 3

Authentication - Phase 1

Initial packet and response
The initial packet sent to the reader is a clear APDU. User supplied information is Version (Ver), Secure
Session Key Number used (KN) and the client nonce (nonce).

Note: For the purpose of this document “complement” means the inverse of.
e.g. data XOR with FFFFFFFFFFFFFFFFFFFFFFFF

The initial packet send from the key loading application to the reader only needs 3 pieces of data
Ver: 0x01 This is fixed, may change over implementations.

_ The Key ID for the End User Key

Nonce: 5F F8 OF 01 72 93 F4 AE 8 Byte nonce (random data)

Ver KN
TX : FF 70 07 6B 14 Al 12 A0 10 80 01 01 81 01 PB@ 82
08 5F F8 OF 01 72 93 F4 AE 00
nonce
RX : 9D 20 13 51 22 C7 4D OA 1F 0B 8E FC 8E 23 D1 81

1E E6 53 85 34 58 61 EB 98 A2 7D 69 E4 B8 FO 7A
B5 63 90 00

Information needed: RX bytes 2..34 (32 bytes Data)

13 51 22 C7 4D OA 1F OB 8E FC 8E 23 D1 81 1E E6
53 85 34 58 61 EB 98 A2 7D 69 E4 B8 FO 7A B5 63

Client nonce appended to end (this is not really needed as long as you have the client nonce)

13 51 22 C7 4D 0A 1F 0B Server UID + Server Nonce
Server Cryptogram
5F F8 OF 01 72 93 F4 AE Client Nonce
Extract Fields:
Server UID :13 51 22 C7 4D OA 1F OB
Server Nonce :
Server Cryptogram : h
Client Nonce :5F F8 OF 01 72 93 F4 AE

Create Secure Channel base key

Key - EndUser H00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of

Server UID :13 51 22 C7 4D OA 1F OB

Compliment Server UID - ENEENSERENSEEONE
Data - Server UID + Compliment: 13 51 22 C7 4D 0A 1F 0B _

v :00 00 00 00 00O 00 00 OO 0O 00 00 0O 00 00 00 0O

Result - AES Encrypt (ECB) ;OSRGOS DRI G

Omnikey 5427 Secure Key Loading Example Page 4

Create Session keys

We now use the Secure Channel Base Key and Server Nonce to create the three session keys

Secure Channel Base Key A3 4F 5A 39 8B EC C2 02 6B ED F8 FF B4 2C E4 EE

Server Nonce

1 8E FC

Session key Initial data

SN is the first 2 bytes from the serverNonce 8t FC

SN
smk1 10101 -~ 00 00 00 00 00 00 00 00 00 00 00 00

smk2 :01 02 8 FC 00 00 00 OO 0O 00 00 00 00 00 00 0O

emkl 101 82 =L £C 00 00 00 00 00 00 00 00 00 00 00 00

Data - smk1 initial data

Key — SecureChannelBaseKey
v

Result - AES Encrypt (ECB)

Data - smk2 initial data

Key - SecureChannelBaseKey
v

Result — AES Encrypt (ECB)

Data - emk1 initial data

Key - SecureChannelBaseKey
v

Result — AES Encrypt (ECB)

Session Keys

Now encrypted these three with the SecureChannelBaseKey

MA3 4F 5A 39 8B EC C2 02 6B ED F8 FF B4 2C E4 EE

.00 00 00 00 0O OO OO0 0O 0O OO 00 0O 0O OO0 00 0O
:CD 40 05 71 B4 28 D4 85 FB EF 6B 6A 63 5A 37 51

:01 02 8E FC 00 00 00 OO 0O 00 00 00 00 00 00 00

MA3 4F 5A 39 8B EC C2 02 6B ED F8 FF B4 2C E4 EE

.00 00 00 00 OO OO OO0 0O 0O OO 00 0O 0O OO0 00 0O

A3 4F 5A 39 8B EC C2 02 6B ED F8 FF B4 2C E4 EE

.00 00 00 00 OO OO OO OO 0O OO 00 0O 0O OO0 00 0O

smkl :cpD 40 05 71 B4 28 D4 85 FB EF 6B 6A 63 5A 37 51

smk2 :
emk1l

To test that we have created the correct session keys, we can now calculate the server cryptogram and
compare to the actual cryptogram we received from the reader.

Data — clientNonce + serverNonce : 5F F8 OF 01 72 93 F4 AE

Key - emk1
\Y)
Result - AES Encrypt (ECB)

Should match serverCryptogram

.00 00 00 00 00 OO 00 0O OO OO0 OO0 0O 0O 00 00 0O

53 85 34 58 61 EB 98 A2 7D 69 E4 B8 FO 7A B5 63

We have a match, so our emk1 must be correct.

Omnikey 5427 Secure Key Loading Example Page 5

Authentication - Phase 2

Now that we have our session keys, we can build our response to the device to complete the mutual
authentication. We should note that the server (device) cryptogram was clientNonce + serverNonce,
our response should be the opposite, serverNonce + clientNonce.

Build Next Packet Server Nonce Client Nonce
Data - Client Crypto Data : 5F F8 OF 01 72 93 F4 AE
Key - emk1 :h
v 100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Result - AES Encrypt (ECB) 117 D3 1E 81 33 45 C3 4D 02 E2 1E 4C DD CE 18 2D

Compute cMAC
Data - Client Crypto Block 117 D3 1E 81 33 45 C3 4D 02 E2 1E 4C DD CE 18 2D
Key — smk2 ;51 ED 86 8B 61 0C CA 4C 97 7F 29 45 BE 7B 0A FO

v 200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Result - AES Encrpyt (CBC)

Build APDU from results above.

FF 70 07 6B 28 Al 26 Al 24 <- Fixed
80 10 <- Fixed
17 D3 1E 81 33 45 C3 4D 02 E2 1E 4C DD CE 18 2D <- Encrypted Client Crypto
81 10 <- Fixed
TS < Client Crypto Mac
00 <- Fixed
TX: FF 70 07 6B 28 Al 26 Al 24 80 10 17 D3 1E 81 33

45 C3 4D 02 E2 1E 4C DD CE 18 2D 81 10 [CHEEHEE

00

RX: BBEEE 00 40 B4 F1 87 67 50 06 69 7F 08 4B CC 88

16 F9 G000
Correct response should start with - and end with -
Response Data 100 40 B4 F1 87 67 50 06 69 7F 08 4B CC 88 16 F9

This response is the MAC of a null/padding : 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Note: From here the IV is based on previous data. As such it will be flagged as IVBx (IV Base)

Compute MAC
Data - Client Crypto Block :80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Key — smk2 151 ED 86 8B 61 0C CA 4C 97 7TF 29 45 BE 7B 0A FO

\Y; 100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Result - AES Encrypt (CBC) - (RSOGO SNCONGEN <- /51
Should match data 100 40 B4 F1 87 67 50 06 69 7F 08 4B CC 88 16 F9

We have a match so the device has accepted the last step in the authentication.

Omnikey 5427 Secure Key Loading Example Page 6

Send Key over the Secure Channel

We have now proven each side knows the master key chosen and correctly created the session keys
From here on we use the last MAC as the next IV

smki1 :CD 40 05 71 B4 28 D4 85 FB EF 6B 6A 63 5A 37 51
smk2
emk1l
IVB1

Build and send the change key APDU

Build change key packet (this may change for different key types/sizes, more testing needed to confirm)

Encrypt Payload

KN LN LN key bytes Padding
Data - Clear Change Key Packet : Fr 82 20 AO Al A2 A3 A4 A5 A6 A7
Key emk1 :
IVB1 :
IV - Compliment IVB1 :FF BF 4B OE 78 98 AF F9 96 80 F7 B4 33 77 E9 06
Result - AES Encrypt CBC :8F 91 A4 3F C6 82 9F 2E 54 F6 B6 2E CA 44 E0 34

Compute cMAC

Data - Crypto Block 18F 91 A4 3F C6 82 9F 2E 54 F6 B6 2E CA 44 EO 34

Key - smk2 :
IV -1VB1 :
Result - AES Encrypt (CBC) : 66 F8 EA 6E CB C9 95 38 06 65 16 29 0B AD FO A6 <- VB2

TX: FF 70 07 6B 20 8F 91 A4 3F C6 82 9F 2E 54 F6 B6
2E CA 44 EO 34 66 F8 EA 6E CB C9 95 38 06 65 16
29 0B AD FO A6 00

RX: B 23 83 51 76 F7 EA E1 31 2C 41 87 77 9F 24
61 F5 41 D4 D7 CF 66 5C 6F D4 E3 14 02 9D 21 A3

41 a4 BONON

Check response

Starts and ends with - and ends with -

Cryptogram :A3 83 51 76 F7 EA E1 31 2C 41 87 77 9F 24 61 F5

MAC 141 D4 D7 CF 66 5C 6F D4 E3 14 02 9D 21 A3 41 Ad<- IVB3

Data - Cryptogram ©A3 83 51 76 F7 EA E1 31 2C 41 87 77 9F 24 61 F5
Previous MAC/IVB2 166 F8 EA 6E CB C9 95 38 06 65 16 29 0B AD FO A6
IV — Complement IVB2 199 07 15 91 34 36 6A C7 F9 9A E9 D6 F4 52 OF 59

Key - emkl :
Result - AES (CBC) Decrypt : 80 00 00 00 00 00 OO 00 00 OO0 00O 00 00 OO

OK (-) and Padding Null (80 00...)

Omnikey 5427 Secure Key Loading Example Page 7

Close Session - Send Null packet

Encrypt Payload
Data - Clear Change Key Packet : 91 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00

Key - emk1 :
IVB3 :
IV - Compliment IVB3 :BE 2B 28 30 99 A3 90 2B 1C EB FD 62 DE 5C BE 5B

Result - AES Encrypt CBC :5F 43 8A EB BE 18 F4 Al D8 64 OB 12 77 2F FF D1

Compute MAC

Data - Crypto Block :5F 43 8A EB BE 18 F4 Al D8 64 OB 12 77 2F FF D1
Key - smk2 :
IV -1VB3

Result - AES Encrypt (CBC)

TX: FF 70 07 6B 20 5F 43 8A EB BE 18 F4 Al D8 64 OB

12 77 2F FF D1 2IIDAT0T34198 3485121164 28163
52 B7 F1 EC 4A 00

RX: 9p oo [ONERE

Response to close secure session: - OK

Omnikey 5427 Secure Key Loading Example Page 8

