#include "sound_engine.h" #include "../flizzer_tracker_hal.h" #include void sound_engine_init(SoundEngine* sound_engine, uint32_t sample_rate, bool external_audio_output, uint32_t audio_buffer_size) { sound_engine->audio_buffer = malloc(audio_buffer_size * sizeof(sound_engine->audio_buffer[0])); sound_engine->audio_buffer_size = audio_buffer_size; sound_engine->sample_rate = sample_rate; sound_engine->external_audio_output = external_audio_output; for(int i = 0; i < NUM_CHANNELS; ++i) { sound_engine->channel[i].lfsr = RANDOM_SEED; } sound_engine_init_hardware(sample_rate, external_audio_output, sound_engine->audio_buffer, audio_buffer_size); } void sound_engine_deinit(SoundEngine* sound_engine) { free(sound_engine->audio_buffer); if(!(sound_engine->external_audio_output)) { furi_hal_speaker_release(); } } void sound_engine_set_channel_frequency(SoundEngine* sound_engine, SoundEngineChannel* channel, uint32_t frequency) { if(frequency != 0) { channel->frequency = (uint64_t)(ACC_LENGTH) / (uint64_t)1024 * (uint64_t)(frequency) / (uint64_t)sound_engine->sample_rate; } else { channel->frequency = 0; } } static inline uint16_t sound_engine_pulse(uint32_t acc, uint32_t pw) //0-FFF pulse width range { return (((acc >> (((uint32_t)ACC_BITS - 17))) >= ((pw == 0xfff ? pw + 1 : pw) << 4) ? (WAVE_AMP - 1) : 0)); } static inline uint16_t sound_engine_saw(uint32_t acc) { return (acc >> (ACC_BITS - OUTPUT_BITS - 1)) & (WAVE_AMP - 1); } static inline uint16_t sound_engine_triangle(uint32_t acc) { return ((((acc & (ACC_LENGTH / 2)) ? ~acc : acc) >> (ACC_BITS - OUTPUT_BITS - 2)) & (WAVE_AMP * 2 - 1)); } inline static void shift_lfsr(uint32_t* v, uint32_t tap_0, uint32_t tap_1) { typedef uint32_t T; const T zero = (T)(0); const T lsb = zero + (T)(1); const T feedback = ( (lsb << (tap_0)) ^ (lsb << (tap_1)) ); *v = (*v >> 1) ^ ((zero - (*v & lsb)) & feedback); } uint16_t sound_engine_osc(SoundEngineChannel* channel, uint32_t prev_acc) { switch(channel->waveform) { case SE_WAVEFORM_NOISE: { //return sound_engine_noise(channel->accumulator, prev_acc, &channel->lfsr); if((prev_acc & (ACC_LENGTH / 32)) != (channel->accumulator & (ACC_LENGTH / 32))) { shift_lfsr(&channel->lfsr, 22, 17); channel->lfsr &= (1 << (22 + 1)) - 1; } return (channel->lfsr) & (WAVE_AMP - 1); break; } case SE_WAVEFORM_PULSE: { return sound_engine_pulse(channel->accumulator, channel->pw); break; } case SE_WAVEFORM_TRIANGLE: { return sound_engine_triangle(channel->accumulator); break; } case SE_WAVEFORM_SAW: { return sound_engine_saw(channel->accumulator); break; } } return 0; } void sound_engine_fill_buffer(SoundEngine* sound_engine, uint16_t* audio_buffer, uint32_t audio_buffer_size) { for(uint32_t i = 0; i < audio_buffer_size; ++i) { uint16_t output = 0; for(uint32_t chan = 0; chan < NUM_CHANNELS; ++chan) { SoundEngineChannel* channel = &sound_engine->channel[chan]; if(channel->frequency > 0) { uint32_t prev_acc = channel->accumulator; channel->accumulator += channel->frequency; channel->accumulator &= ACC_LENGTH - 1; output += (sound_engine_osc(channel, prev_acc) >> (6 + 2)); } } audio_buffer[i] = output; //2 more bits so all channels fit } }