#include "mag_helpers.h" #define GPIO_PIN_A &gpio_ext_pa6 #define GPIO_PIN_B &gpio_ext_pa7 #define RFID_PIN &gpio_rfid_carrier_out #define ZERO_PREFIX 25 // n zeros prefix #define ZERO_BETWEEN 53 // n zeros between tracks #define ZERO_SUFFIX 25 // n zeros suffix #define US_CLOCK 240 #define US_INTERPACKET 10 // bits per char on a given track const uint8_t bitlen[] = {7, 5, 5}; // char offset by track const int sublen[] = {32, 48, 48}; uint8_t bit_dir = 0; void play_bit_rfid(uint8_t send_bit) { // internal TX over RFID coil bit_dir ^= 1; furi_hal_gpio_write(RFID_PIN, bit_dir); furi_delay_us(US_CLOCK); if(send_bit) { bit_dir ^= 1; furi_hal_gpio_write(RFID_PIN, bit_dir); } furi_delay_us(US_CLOCK); furi_delay_us(US_INTERPACKET); } /*static void play_bit_gpio(uint8_t send_bit) { // external TX over motor driver wired to PIN_A and PIN_B bit_dir ^= 1; furi_hal_gpio_write(GPIO_PIN_A, bit_dir); furi_hal_gpio_write(GPIO_PIN_B, !bit_dir); furi_delay_us(US_CLOCK); if(send_bit) { bit_dir ^= 1; furi_hal_gpio_write(GPIO_PIN_A, bit_dir); furi_hal_gpio_write(GPIO_PIN_B, !bit_dir); } furi_delay_us(US_CLOCK); furi_delay_us(US_INTERPACKET); }*/ void rfid_tx_init() { // initialize RFID system for TX furi_hal_power_enable_otg(); furi_hal_ibutton_start_drive(); furi_hal_ibutton_pin_low(); // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting // this doesn't seem to make a difference, leaving it in furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); furi_hal_gpio_write(&gpio_rfid_data_in, false); // false->ground RFID antenna; true->don't ground // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false); furi_hal_gpio_init(RFID_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); // confirm this delay is needed / sufficient? legacy from hackathon... furi_delay_ms(300); } void rfid_tx_reset() { // reset RFID system furi_hal_gpio_write(RFID_PIN, 0); furi_hal_rfid_pins_reset(); furi_hal_power_disable_otg(); } /* static void gpio_tx_init() { furi_hal_power_enable_otg(); gpio_item_configure_all_pins(GpioModeOutputPushPull); } static void gpio_tx_reset() { gpio_item_set_pin(PIN_A, 0); gpio_item_set_pin(PIN_B, 0); gpio_item_set_pin(ENABLE_PIN, 0); gpio_item_configure_all_pins(GpioModeAnalog); furi_hal_power_disable_otg(); } */ void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) { // convert individual track to bits int tmp, crc, lrc = 0; int i = 0; // convert track data to bits for(uint8_t j = 0; track_data[i] != '\0'; j++) { crc = 1; tmp = track_data[j] - sublen[track_index]; for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) { crc ^= tmp & 1; lrc ^= (tmp & 1) << k; bit_array[i] = tmp & 1; i++; tmp >>= 1; } bit_array[i] = crc; i++; } // finish calculating final "byte" (LRC) tmp = lrc; crc = 1; for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) { crc ^= tmp & 1; bit_array[i] = tmp & 1; i++; tmp >>= 1; } bit_array[i] = crc; i++; // My makeshift end sentinel. All other values 0/1 bit_array[i] = 2; i++; //bool is_correct_length = (i == (strlen(track_data) * bitlen[track_index])); //furi_assert(is_correct_length); } void mag_spoof_single_track_rfid(FuriString* track_str, uint8_t track_index) { // Quick testing... rfid_tx_init(); size_t from; size_t to; // TODO ';' in first track case if(track_index == 0) { from = furi_string_search_char(track_str, '%'); to = furi_string_search_char(track_str, '?', from); } else if(track_index == 1) { from = furi_string_search_char(track_str, ';'); to = furi_string_search_char(track_str, '?', from); } else { from = 0; to = furi_string_size(track_str); } if(from >= to) { return; } furi_string_mid(track_str, from, to - from + 1); const char* data = furi_string_get_cstr(track_str); uint8_t bit_array[(strlen(data) * bitlen[track_index]) + 1]; track_to_bits(bit_array, data, track_index); FURI_CRITICAL_ENTER(); for(uint8_t i = 0; i < ZERO_PREFIX; i++) play_bit_rfid(0); for(uint8_t i = 0; bit_array[i] != 2; i++) play_bit_rfid(bit_array[i] & 1); for(uint8_t i = 0; i < ZERO_SUFFIX; i++) play_bit_rfid(0); FURI_CRITICAL_EXIT(); rfid_tx_reset(); } void mag_spoof_two_track_rfid(FuriString* track1, FuriString* track2) { // Quick testing... rfid_tx_init(); const char* data1 = furi_string_get_cstr(track1); uint8_t bit_array1[(strlen(data1) * bitlen[0]) + 1]; const char* data2 = furi_string_get_cstr(track2); uint8_t bit_array2[(strlen(data2) * bitlen[1]) + 1]; track_to_bits(bit_array1, data1, 0); track_to_bits(bit_array2, data2, 1); FURI_CRITICAL_ENTER(); for(uint8_t i = 0; i < ZERO_PREFIX; i++) play_bit_rfid(0); for(uint8_t i = 0; bit_array1[i] != 2; i++) play_bit_rfid(bit_array1[i] & 1); for(uint8_t i = 0; i < ZERO_BETWEEN; i++) play_bit_rfid(0); for(uint8_t i = 0; bit_array2[i] != 2; i++) play_bit_rfid(bit_array2[i] & 1); for(uint8_t i = 0; i < ZERO_SUFFIX; i++) play_bit_rfid(0); FURI_CRITICAL_EXIT(); rfid_tx_reset(); } //// @antirez's code from protoview for bitmapping. May want to refactor to use this... /* Set the 'bitpos' bit to value 'val', in the specified bitmap * 'b' of len 'blen'. * Out of range bits will silently be discarded. */ void set_bit(uint8_t* b, uint32_t blen, uint32_t bitpos, bool val) { uint32_t byte = bitpos / 8; uint32_t bit = bitpos & 7; if(byte >= blen) return; if(val) b[byte] |= 1 << bit; else b[byte] &= ~(1 << bit); } /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes. * Out of range bits return false (not bit set). */ bool get_bit(uint8_t* b, uint32_t blen, uint32_t bitpos) { uint32_t byte = bitpos / 8; uint32_t bit = bitpos & 7; if(byte >= blen) return 0; return (b[byte] & (1 << bit)) != 0; } /*uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) { if (rate == 0) return 0; // We can't perform the conversion. uint32_t bitpos = 0; for (uint32_t j = 0; j < count; j++) { uint32_t dur; bool level; raw_samples_get(s, j+idx, &level, &dur); uint32_t numbits = dur / rate; // full bits that surely fit. uint32_t rest = dur % rate; // How much we are left with. if (rest > rate/2) numbits++; // There is another one. while(numbits--) set_bit(b,blen,bitpos++,s[j].level); } return bitpos; }*/